Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cosi ta có :
\(4\ge a+b\ge2\sqrt{ab}\Leftrightarrow\sqrt{ab}\le2\Leftrightarrow ab\le4\)
Ta có bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
(Nhân chéo để chứng minh )
Áp dụng :
\(S=\frac{1}{a^2+b^2}+\frac{25}{ab}+ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{49}{2ab}+ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+ab+\frac{16}{ab}+\frac{17}{2ab}\)
\(\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{ab.\frac{16}{ab}}+\frac{17}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+8+\frac{17}{2.4}=\frac{1}{4}+8+\frac{17}{8}=\frac{83}{8}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)
\(S=\frac{1}{a^2+b^2}+\frac{25}{ab}+ab\)
\(=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(ab+\frac{16}{ab}\right)+\frac{17}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{ab\cdot\frac{16}{ab}}+\frac{17}{\frac{\left(a+b\right)^2}{2}}\)
\(\ge\frac{4}{4^2}+8+\frac{17}{\frac{4^2}{2}}=\frac{83}{8}\)
Dấu "=" xảy râ khi x = y = 2
Ta có \(a+b\ge2\sqrt{ab}\)=> \(ab\le4\)
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{1}{4}\)
\(\frac{16}{ab}+ab\ge8\)
\(\frac{17}{2ab}\ge\frac{17}{8}\)
=> \(S\ge8+\frac{17}{8}+\frac{1}{4}=\frac{83}{8}\)
Vậy MinS=83/8 khi a=b=2
Ta có : \(4\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le4\)
Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bạn có thể chứng minh bằng biến đổi tương đương)
Ta có :\(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=\left(\frac{2}{a^2+b^2}+\frac{1}{ab}\right)+\left(\frac{32}{ab}+2ab\right)+\frac{2}{ab}=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{32}{ab}+2ab\right)+\frac{2}{ab}\ge\frac{2.4}{\left(a+b\right)^2}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\ge\frac{8}{4^2}+2.8+\frac{2}{4}=17\)Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a^2b^2=16\\0< a+b\le4\end{cases}\Leftrightarrow}a=b=2\)
Vậy \(MinP=17\Leftrightarrow a=b=2\)
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)
\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)
\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)
Chúc bạn học tốt !!!
b)Từ \(a+b+c=6\Rightarrow\left(a+b+c\right)^2=36\)
\(\Rightarrow36=a^2+b^2+c^2+2\left(ab+bc+ca\right)=P+ab+bc+ca\)
\(\Rightarrow P=36-ab-bc-ca\). Cần tìm \(GTNN\) của \(ab+bc+ca\)
Không mất tính tổng quát giả sử \(a=max\left\{a,b,c\right\}\)
\(\Rightarrow a+b+c=6\le3a\Rightarrow2\le a\le4\). Lại có:
\(ab+bc+ca\ge ab+ac=a\left(b+c\right)=a\left(6-a\right)\ge8\)
Suy ra GTNN của \(ab+bc+ca=8\Leftrightarrow\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
Vậy GTLNP là \(36-8=28\) khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
Chứng minh bđt phụ: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (1)
Ta có:\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng với mọi \(a,b>0\))
Đặt \(A=\frac{1}{a^2+b^2}+\frac{5}{ab}+ab\)
\(\Rightarrow A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{9}{2ab}+ab\)
Áp dụng bđt (1) ta được: \(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}=\frac{4}{4^2}=\frac{1}{4}\)
Áp dụng bđt Cô-si với \(\frac{9}{2ab}+ab\)ta được: \(\frac{9}{2ab}+ab\ge2\sqrt{\frac{9}{2ab}.ab}=2.\sqrt{\frac{9}{2}}=\sqrt{4.\frac{9}{2}}=\sqrt{18}=3\sqrt{2}\)
\(\Rightarrow A\ge\frac{1}{4}+3\sqrt{2}\)
Vậy \(minA=3\sqrt{2}+\frac{1}{4}\)
\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{34}{ab}+\frac{17ab}{8}-\frac{ab}{8}\)
\(P=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17ab}{8}-\frac{ab}{8}\)
\(P\ge2\cdot\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}\cdot\frac{17ab}{8}}-\frac{\frac{\left(a+b\right)^2}{4}}{8}\)
( do \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};x+y\ge2\sqrt{xy};ab\le\frac{\left(a+b\right)^2}{4}\))
\(\Rightarrow P\ge\frac{8}{\left(a+b\right)^2}+2\sqrt{\frac{289}{4}}-\frac{\frac{4^2}{4}}{8}\)
\(\Rightarrow P\ge\frac{8}{16}+17-\frac{1}{2}=17\)
\(P=17\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=2ab\\\frac{34}{ab}=\frac{17ab}{8}\\a=b\\a+b=4\end{matrix}\right.\Leftrightarrow a=b=2\)
Vậy Min P = 17 \(\Leftrightarrow a=b=2\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
\(A=\frac{1}{a^2+b^2}+\frac{25}{ab}+ab\)
\(A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{16}{ab}+ab+\frac{17}{2ab}\)
áp dụng : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}\) mà \(a+b\le4\)
\(\Rightarrow\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{1}{4}\)
theo cô si ta có : \(\frac{16}{ab}+ab\Rightarrow2\sqrt{\frac{16}{ab}\cdot ab}=8\)
có \(ab\le\frac{\left(a+b\right)^2}{4}\le4\) \(\Rightarrow\frac{17}{2ab}\ge\frac{17}{8}\)
\(\Rightarrow A\ge\frac{17}{8}+8+\frac{1}{4}=\frac{83}{8}\)
dấu = xảy ra khi a=b=2