Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(=\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\left(1\right)\)
Áp dụng BĐT AM-GM ta có: :
\(\frac{a}{a^2+b^2+c^2}+9a\left(a^2+b^2+c^2\right)\ge2\sqrt{9a^2}=6a\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a^2+b^2+c^2}+9b\left(a^2+b^2+c^2\right)\ge6b;\frac{c}{a^2+b^2+c^2}+9c\left(a^2+b^2+c^2\right)\ge6c\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge6\left(a+b+c\right)\)
Theo BĐT Cauchy-Schwarz thì:
\(9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9\cdot\frac{\left(a+b+c\right)^2}{3}\cdot\left(a+b+c\right)=3\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}\ge6-3=3\)
Và \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\ge\frac{9}{\frac{\left(a+b+c\right)^2}{3}}=27\)
Khi đó nhìn vào \(\left(1\right)\) thấy \(P\ge27+3=30\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
từ giả thiết, ta có \(\frac{a^2}{b}+\frac{b^2}{a}\le1\)
Mà \(\frac{a^2}{b}+\frac{b^2}{a}\ge\frac{\left(a+b\right)^2}{a+b}=a+b\Rightarrow a+b\le1\)
Mà từ BĐT cô-si, ta luôn có \(\left(a+b\right)^3\ge4ab\left(a+b\right)\ge4\left(a^3+b^3\right)\left(a+b\right)\Rightarrow\frac{\left(a+b\right)^3}{4}\ge\left(a^3+b^3\right)\left(a+b\right)\)
Mà áp dụng BĐT Bu-nhi-a , ta có \(\left(a^3+b^3\right)\left(a+b\right)\ge\left(a^2+b^2\right)^2\)
=>\(\frac{\left(a+b\right)^3}{4}\ge\left(a^2+b^2\right)^2\Rightarrow\frac{1}{4}\ge\left(a^2+b^2\right)^2\Rightarrow a^2+b^2\le\frac{1}{2}\)
Mà \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}=\frac{4}{2+\frac{1}{2}}=\frac{8}{5}\)
Dấu = xảy ra ,=> a=b=1/2
^_^
\(a^3+b^3\le ab\Leftrightarrow ab\left(a+b\right)\le ab\Leftrightarrow a+b\le1.\).Ta có: \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}.\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}=\frac{4}{2+\left(a+b\right)^2-2ab}\ge\frac{4}{2+1-\frac{1}{2}}\ge\frac{8}{5}.\)
Dấu bằng xảy ra khi a=b=1/2.
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(F=\frac{a^6}{b^3+c^3}+\frac{b^6}{c^3+a^3}+\frac{c^6}{a^3+b^3}\)
\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)}=\frac{a^3+b^3+c^3}{2}\)
Áp dụng BĐT AM-GM ta có:
\(a^3+\frac{1}{27}+\frac{1}{27}\ge3\sqrt[3]{a^3\cdot\frac{1}{27}\cdot\frac{1}{27}}=3\cdot\frac{a}{9}=\frac{a}{3}\)
Tương tự ta cũng có: \(b^3+\frac{1}{27}+\frac{1}{27}\ge\frac{b}{3};c^3+\frac{1}{27}+\frac{1}{27}\ge\frac{c}{3}\)
\(\Rightarrow a^3+b^3+c^3+\frac{2}{9}\ge\frac{a+b+c}{3}=\frac{1}{3}\Rightarrow a^3+b^3+c^3\ge\frac{1}{9}\)
\(\Rightarrow F\ge\frac{a^3+b^3+c^3}{2}\ge\frac{\frac{1}{9}}{2}=\frac{1}{18}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
So easy =))
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(F=\frac{4}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\)
\(\ge\frac{\left(1+2\right)^2}{2ab+a^2+b^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge\frac{\left(1+2\right)^2}{\left(a+b\right)^2}+\frac{\frac{\frac{\left(\left(a+b\right)^2\right)^2}{2}}{2}}{2}\)
\(=\frac{9}{1}+\frac{\frac{\frac{1}{2}}{2}}{2}=9+\frac{1}{8}=\frac{73}{8}\)
Xảy ra khi \(a=b=\frac{1}{2}\)
cách làm như trên sẽ k được điểm, bởi bn làm ngược lại , đoán điểm rơi xong thay vào ,nếu k đoán được thì sao ?
thứ 2, a,b,c lớn nhất có thể = căn 3 >1 ,giả sử a= căn 3,b=c=0.
hôm nọ có god chém pqr rất thần thánh, e xin ''mượn'' lại:
Đặt \(\hept{\begin{cases}a+b+c=p\\ab+bc+ca=q\\abc=r\end{cases}}\)
\(P=2p+\frac{q}{r}\)
ta có BĐT \(q^2\ge3rp\)(auto chứng minh)
\(\Leftrightarrow\frac{q}{r}\ge\frac{3p}{q}\)
do đó \(P\ge2p+\frac{3p}{q}\)và \(q=\frac{p^2-3}{2}\)
cần cm \(P\ge9\Leftrightarrow2p+\frac{6p}{p^2-3}\ge9\Leftrightarrow\left(p-3\right)^2\left(2p+3\right)\ge0\)(luôn đúng)
vậy\(P\ge9\)
Ta có: \(ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow\left(a+b\right)^2\ge4\Rightarrow a+b\ge2\)
Và \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\ge2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{b+1}=a^3-\frac{a^3b}{b+1}\ge a^3-\frac{a^3b}{2\sqrt{b}}=a^3-\frac{a^3\sqrt{b}}{2}\)
Tương tự cho ta cũng có:\(\frac{b^3}{a+1}\ge b^3-\frac{b^3\sqrt{a}}{2}\)
\(\Rightarrow Q\ge a^3+b^3-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\left(1\right)\)
TIếp tục xài AM-GM: \(\sqrt{b}\le\frac{b+1}{2}\Rightarrow a^3\sqrt{b}=\frac{a^3b+a^3}{2}\)
\(\Rightarrow\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\le\frac{\frac{a^3b+a^3}{2}+\frac{ab^3+b^3}{2}}{2}=\frac{a^3b+ab^3+a^3+b^3}{4}\)
\(\Rightarrow2-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-\frac{a^3b+ab^3+a^3+b^3}{4}\)
Cần chứng minh \(2-\frac{a^3b+ab^3+a^3+b^3}{4}\ge1\)\(\Leftrightarrow\frac{a^3b+ab^3+a^3+b^3}{4}\ge1\)
\(\Leftrightarrow a^3b+ab^3+a^3+b^3\ge4\Leftrightarrow a^3b+ab^3\ge2\) vì \(a^3+b^3\ge2\)
\(\Leftrightarrow\left(ab\right)^2\left(a+b\right)\ge2\) đúng vì ab=1 và \(a+b\ge2\)
\(\Rightarrow Q_{Min}=2-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-1=1\)
Khi a=b=1