\(\left(a+b+1\right)\left(a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2020

em mới lớp 7 nên không rành lắm về bất đẳng thức ạ :((

Ta có :\(a.b=1< =>a=\frac{1}{b}\)

Áp dụng bất đẳng thức : 

Ta được \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)

\(\ge\left(a+b+1\right)\left(2ab\right)+\frac{4}{a+b}\)

\(=\left(a+b+1\right).2+\frac{4}{a+b}\)

Áp dụng Bất đẳng thức Cauchy cho 2 số không âm 

\(2\left(a+b+1\right)+\frac{4}{a+b}\ge2\sqrt[2]{\left[2\left(a+b\right)+2\right].\frac{4}{a+b}}\)

\(=2\sqrt[2]{\frac{8\left(a+b\right)+8}{a+b}}=2\sqrt[2]{\frac{8\left(\frac{1}{b}+b\right)+8}{\frac{1}{b}+b}}\left(+\right)\)

Áp dụng bất đẳng thức Cauchy cho 2 số không âm :

\(\frac{1}{b}+b\ge2\sqrt[2]{\frac{1}{b}.b}=2\)

Khi đó \(\left(+\right)< =>2\sqrt[2]{\frac{8.2+8}{2}}=2\sqrt[2]{12}=\sqrt[2]{48}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=1\)

Vậy \(Min_A=\sqrt{48}\)khi \(a=b=1\)

22 tháng 2 2018

đây là toán đâu phải văn. bạn bị say rượu à

câu 1: Điểm nào sau đây nằm trên đồ thị hàm số y = f (x)=\(\frac{1}{2}^{x^2}\) A. Điểm M (-2;1) B. điểm N (-2;-2) C. điểm P (-2;2) D. Q (-2;1) câu 2: Cho phương trình ( ẩn x): \(x^2-\left(m+1\right)x+m=0\). Khi đó phương trình có 2 nghiệm là: A. \(x_1=1;x_2=m\) B. \(x_1=-1;x_2=-m\) C. \(x_1=-1;x_2=m\) D. \(x_1=1;x_2=-m\) câu 3: Diện tích hình tròn nội tiếp hình vuông có cạnh 8cm...
Đọc tiếp

câu 1: Điểm nào sau đây nằm trên đồ thị hàm số y = f (x)=\(\frac{1}{2}^{x^2}\)

A. Điểm M (-2;1) B. điểm N (-2;-2) C. điểm P (-2;2) D. Q (-2;1)

câu 2: Cho phương trình ( ẩn x): \(x^2-\left(m+1\right)x+m=0\). Khi đó phương trình có 2 nghiệm là:

A. \(x_1=1;x_2=m\) B. \(x_1=-1;x_2=-m\)

C. \(x_1=-1;x_2=m\) D. \(x_1=1;x_2=-m\)

câu 3: Diện tích hình tròn nội tiếp hình vuông có cạnh 8cm là:

A. \(4\pi\left(cm^2\right)\) B. \(16\pi\left(cm^2\right)\) C. \(64\pi\left(cm^2\right)\) D. \(10\pi\left(cm^2\right)\)

câu 4: Một hình nón có bán kính đáy bằng 3cm, đường cao bằng 21cm thì thể tích là :

A. \(63\pi\left(cm^3\right)\) B. \(11\pi\left(cm^3\right)\) C. \(33\pi\left(cm^3\right)\) D. \(20\pi\left(cm^3\right)\)

câu 5: Quãng đường AB dài 150 km. Một ô tô đi từ A đến B rồi nghỉ ở B 4 giời 30 phút, sau đó trở về A hết tất cả 10 giờ. Tính vận tốc của ô tô lúc đi ( Biến vận tốc lúc về nhanh hơn vận tốc lúc đi là 10 km\h).

câu 6: Giair phương trình : \(-x^2+2=\sqrt{2-x}\)

1
25 tháng 3 2019

cái này phải gửi vào mục toán chứ sao lại gửi vào văn vậy bạn...

\(\frac{1}{11xy}\sqrt{\frac{121x^2}{y^6}}=\frac{1}{11xy}.\frac{11x}{y^3}=\frac{1}{y^4}\)

ai choi poke dai chien ko?CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI VÀ NĂNG KHIẾUCâu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho...
Đọc tiếp

ai choi poke dai chien ko?

CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI VÀ NĂNG KHIẾU

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

Câu 16. Tìm giá trị lớn nhất của biểu thức:

Câu 17. So sánh các số thực sau (không dùng máy tính):

Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3

Câu 19. Giải phương trình: .

Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.

Câu 21. Cho .

Hãy so sánh S và .

Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.

Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:

Câu 24. Chứng minh rằng các số sau là số vô tỉ:

Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?

2
7 tháng 1 2019

trên zing hả,tui chơi

7 tháng 1 2019

Giả sử √7 là số hữu tỉ 
√7= m/n ( m,n thuộc Z và (m,n)=1)
⇒ 7 = m²/n² 
⇒ m² =7n² 
⇒ m² chia hết cho n² 
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n) 
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.