Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a3 - a2b + ab2 - 6b3 = 0
<=> a3 + a2b + 3ab2 - 2a2b - 2ab2 - 6b3 = 0
<=> a( a2 + ab + 3b2 ) - 2b( a2 + ab +3b2 ) = 0
<=> ( a2 + ab + 3b2 ).( a - 2b ) = 0
=> a2 + ab + 3b2 = 0 (1) hoặc a - 2b = 0 (2)
Giải (1) : a2 + ab + 3b2 = 0
Vì a > b > 0 => a2 + ab + 3b2 khác 0
=> a2 + ab + 3b2 = 0 ( vô nghiệm )
Giải (2) : a - 2b = 0 <=> a = 2b thay vào D :
=> D = ( 16b4 - 4b4 )/( b4 - 64b4 )
=> D = 12b4/-63b4
=> D = -4/21
\(\frac{a^3}{b^3}-\frac{a^2}{b^2}+\frac{a}{b}-6=0.\) " (chia 2 vế cho b^3)
\(t^3-t^2+t-6=0\) " đăt a/b=t
từ đây bạn có thể dễ dàng tìm được t
mình chỉ gợi ý đến đây thôi
Ta có : \(a^3-a^2b+ab^2-6b^3=0\)
\(\Rightarrow a^3-2a^2b+a^2b-2ab^2+3ab^2-6b^3=0\)
\(\Rightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Rightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\) mà \(a>b>0\)\(\Rightarrow a^2+ab+3b^2>0\)
\(\Rightarrow a-2b=0\Rightarrow a=2b\)
thay vào B ta được : \(B=\dfrac{16b^4-4b^4}{b^4-64b^4}=-\dfrac{12b^4}{63b^4}=-\dfrac{4}{21}\)
a) \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\)
= \(\sqrt{\dfrac{6+2\sqrt{5}}{4x^2}}-\sqrt{\dfrac{6-2\sqrt{5}}{4}}=\sqrt{\dfrac{5+2\sqrt{5}+1}{4x^2}}-\sqrt{\dfrac{5-2\sqrt{5}+1}{4}}\) = \(\sqrt{\dfrac{\left(\sqrt{5}+1\right)^2}{\left(2x\right)^2}}-\sqrt{\dfrac{\left(\sqrt{5}-1\right)^2}{2^2}}=\dfrac{\left|\sqrt{5}+1\right|}{\left|2x\right|}-\dfrac{\left|\sqrt{5}-1\right|}{2}=\dfrac{\sqrt{5}+1}{2x}-\dfrac{\sqrt{5}-1}{2}\)
Thay x = 1 vào biểu thức \(\dfrac{\sqrt{5}+1}{2x}-\dfrac{\sqrt{5}-1}{2}\) ta được :
\(\dfrac{\sqrt{5}+1}{2}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{2}=1\)
Vậy tại x =1 thì giá trị của biểu thức \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\) là bằng 1
b) \(\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\)
= \(\sqrt{\dfrac{a\left(a^2+4a+4\right)}{a\left(a^2-2ab+b^2\right)}}-\sqrt{\dfrac{b\left(b^2-4b+4\right)}{b\left(a^2-2ab+b^2\right)}}+ab\)
= \(\dfrac{\sqrt{\left(a+2\right)^2}}{\sqrt{\left(a-b\right)^2}}-\dfrac{\sqrt{\left(b-2\right)^2}}{\sqrt{\left(a-b\right)^2}}+ab=\dfrac{a+2}{a-b}-\dfrac{b-2}{a-b}+ab\) = a - b + ab
Thay a = 4 và b = 3 vào biểu thức a - b +ab ta được :
4 - 3 + 4.3 = 13
Vậy tại a = 4 ; b = 3 thì giá trị của biểu thức \(\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\) là bằng 13
c) \(ab^2.\sqrt{\dfrac{4}{a^2b^4}}+ab=ab^2.\dfrac{2}{ab^2}+ab=2+ab\)
Thay a = 1 và b = -2 vào BT : 2 + ab ta được :
2 + 1.(-2) = 2 + (-2) = 0
Vậy tại a = 1 ; b = -2 thì giá trị của biểu thức \(ab^2.\sqrt{\dfrac{4}{a^2b^4}}+ab\) là bằng 0
d) \(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\) = \(\dfrac{a+b}{b^2}.\dfrac{\sqrt{a^2b^2}}{\sqrt{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{ab}{a+b}=\dfrac{ab}{b^2}\)
Thay a = 1 ; b =2 vào BT : \(\dfrac{ab}{b^2}\) ta được : \(\dfrac{1.2}{2^2}=\dfrac{1}{2}\)
Vậy tại a =1 ; b =2 GT của BT : \(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\) là \(\dfrac{1}{2}\)
a: \(=2ab\cdot\dfrac{-15}{b^2a}=\dfrac{-30}{b}\)
b: \(=\dfrac{2}{3}\cdot\left(1-a\right)=\dfrac{2}{3}-\dfrac{2}{3}a\)
c: \(=\dfrac{\left|3a-1\right|}{\left|b\right|}=\dfrac{3a-1}{b}\)
d: \(=\left(a-2\right)\cdot\dfrac{a}{-\left(a-2\right)}=-a\)
a) \(ab^2\cdot\sqrt{\dfrac{3}{a^2b^4}}=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)
= \(\sqrt{3}\)
b) b. \(\sqrt{\dfrac{27\cdot\left(a-3\right)^2}{48}=}\dfrac{\sqrt{27}\cdot\sqrt{\left(a-3\right)^2}}{\sqrt{48}}\)
= \(\dfrac{3\cdot\sqrt{3}\cdot\left(a-3\right)}{\sqrt{3}\cdot\sqrt{16}}=\dfrac{3\cdot\left(a-3\right)}{4}\)
= 0.75*(a-3)
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
ta có: \(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-2a^2b\right)+\left(a^2b-2ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\)
vì \(a>b>0\Rightarrow\left(a^2+ab+3b^2\right)>0\)
\(\Rightarrow a-2b=0\)
\(\Leftrightarrow a=2b\)
Thế vào \(\dfrac{a^4-4b^4}{b^4-4a^4}=\dfrac{-4}{21}\)