Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
từ giả thiết, ta có \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\Rightarrow xy+yz+xz=1\)
Ta có \(\frac{1}{\sqrt{a^2+1}}=\frac{1}{\sqrt{\frac{1}{x^2}+1}}=\frac{1}{\sqrt{\frac{1+x^2}{x^2}}}=\frac{x}{\sqrt{x^2+xy+yz+zx}}\) =\(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Áp dụng BĐT cô-si, ta có \(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự, rồi cộng lại, ta có
A\(\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
=> A<=3/2
Dấu = xảy ra <=> \(a=b=c=\sqrt{3}\)
^_^
Từ \(a^2+b^2=4\Rightarrow\left(a+b\right)^2-2ab=4\)
\(\Rightarrow2ab=\left(a+b\right)^2-4\)
Ta có : \(2M=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{a+b+2}=a+b-2\)
Lại có : \(\left(a+b\right)^2\le2\left(a^2+b^2\right)=8\)
\(\Rightarrow a+b\le2\sqrt{2}\)
\(\Rightarrow2M\le2\sqrt{2}-2\)
\(\Rightarrow M\le\sqrt{2}-1\)
Dấu ''=" <=> \(a=b=\sqrt{2}\)
bài này khó quá cậu thử cm a+b>=căn 8 xem