\(a+b=\frac{1}{a^2}+\frac{1}{b^2}\)

Tìm GTNN của 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)

+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)

\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)

NV
16 tháng 2 2020

\(P^2=\left(9+a^2b^2\right)\left(\frac{1}{a}+\frac{1}{b}\right)^2=\left(\frac{3}{a}+\frac{3}{b}\right)^2+\left(a+b\right)^2\)

\(P^2\ge\left(\frac{12}{a+b}\right)^2+\left(a+b\right)^2=\frac{144}{\left(a+b\right)^2}+\frac{9\left(a+b\right)^2}{16}+\frac{7\left(a+b\right)^2}{16}\)

\(P^2\ge2\sqrt{\frac{144.9}{16}}+\frac{7.4^2}{16}=25\)

\(\Rightarrow P\ge5\)

16 tháng 2 2020

Đặt P=\(\sqrt{9+a^2b^2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\sqrt{9\left(\frac{1}{a}+\frac{1}{b}\right)^2+a^2b^2\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)

\(=\sqrt{\left(\frac{3}{a}+\frac{3}{b}\right)^2+\left(a+b\right)^2}\)

Theo cauchy-schwartz:

\(\left(\left(\frac{3}{a}+\frac{3}{b}\right)^2+\left(a+b\right)^2\right)\left(\left(\frac{3}{4}\right)^2+1^2\right)\ge\left[\frac{9}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+a+b\right]^2\)

\(\frac{9}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+a+b\ge\frac{9}{4}.\frac{4}{a+b}+a+b=\frac{9}{a+b}+a+b\)

Theo AM-GM:

\(\frac{9}{a+b}+a+b=a+b+\frac{16}{a+b}-\frac{7}{a+b}\ge2\sqrt{\left(a+b\right)\frac{16}{a+b}}-\frac{7}{a+b}\)

Mà a+b≥4

\(\Rightarrow\frac{9}{a+b}+a+b\ge2\sqrt{16}-\frac{7}{4}=\frac{25}{4}\)

=>P2\(\frac{\left(\frac{25}{4}\right)^2}{\left(\frac{3}{4}\right)^2+1^2}=5^2\)

=>P≥5

Dấu bằng xảy ra khi a=b=2

Vậy minP=5 khi a=b=2

15 tháng 11 2020

1)

\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)

Dấu "=" xảy ra khi a=2

15 tháng 11 2020

2)

\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)

NV
11 tháng 2 2020

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)

b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

8 tháng 7 2020

\(P=\frac{16a}{3}+\frac{1}{b}+\frac{4}{4c}\ge\frac{16a}{9}+\frac{16a}{9}+\frac{16a}{9}+\frac{9}{b+4c}\ge4\sqrt[4]{\frac{4096}{81}.\frac{a^3}{b+4c}}=\frac{32}{3}\)

"=" \(\Leftrightarrow\)\(\left(a;b;c\right)=\left(\frac{3}{2};\frac{9}{8};\frac{9}{16}\right)\)

1 tháng 3 2020

Áp dụng cosi ta có \(a.a.a.b.b\le\frac{3a^5+2b^5}{5};b.b.b.a.a\le\frac{3b^5+2a^5}{5}\)

=> \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

Khi đó

\(VT\le\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}}\)

Áp dụng BĐT buniacoxki  ta có :

\((\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}})^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\frac{1}{b^2\left(a+b\right)}+\frac{1}{c^2\left(b+c\right)}+...\right)\)

Mà 1/a^2+1/b^2+1/c^2=1(giả thiết)

=> \(VT\le VP\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=can(3)

2 tháng 3 2020

hay quá 

23 tháng 12 2016

a)\(B=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)

Áp dụng BĐT AM-GM ta có:

\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)

\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}\cdot8ab}-\left(a+b\right)^2=7\)

Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)

Vậy \(Min_B=7\) khi \(a=b=\frac{1}{2}\)

b)\(C\ge\frac{1}{1-3ab\left(a+b\right)}+\frac{4}{ab\left(a+b\right)}\)

\(\ge\frac{16}{1-3ab\left(a+b\right)+3ab\left(a+b\right)}+\frac{1}{\frac{\left(a+b\right)^3}{4}}\ge16+4=20\)

Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)

Vậy \(Min_C=20\) khi \(a=b=\frac{1}{2}\)

 

 

24 tháng 12 2016

thanks

14 tháng 8 2019

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1^2+4^2\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)

\(\Leftrightarrow17\cdot\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)

\(\Leftrightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)

Tương tự ta có :

\(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c}\)

\(\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)

Cộng theo vế của 3 bđt ta được :

\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(\Leftrightarrow\sqrt{17}\cdot A\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

Áp dụng bất đẳng thức Cô-si :

\(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)

\(\ge2\sqrt{\frac{4\cdot16a}{a}}+2\sqrt{\frac{4\cdot16b}{b}}+2\sqrt{\frac{4\cdot16c}{c}}-15\left(a+b+c\right)\)

\(\ge16+16+16-15\cdot\frac{3}{2}=\frac{51}{2}\)

Do đó : \(\sqrt{17}\cdot A\ge\frac{51}{2}\)

\(\Leftrightarrow A\ge\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)