K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(a^3+b^3=a+b\)

\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=a+b\)

\(\Rightarrow a^2-ab+b^2=1\)

\(a^2+b^2=a+b\)

\(\Rightarrow a-1-ab+b=0\)

\(\Rightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Rightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}a-1=0\\1-b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

Thay a = 1, b=1 vaò biểu thức \(a^{2015}+b^{2015}\) ,có :

\(1^{2015}+1^{2015}=1+1=2\)

Vậy ............

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

a+b+c=1 <=> a+b=1-c

+) Nếu 1-c=0 => a+b=0 <=> a=-b

=> A = a2015+b2015+c2015

A = (-b)2015+b2015+c2015

A = c2015 => A = 1 (Vì 1-c=0) (1)

Ta có: a3+b3+c3=1

a3+b3=1-c3

(a+b)(a2-ab+b20=(1-c)(1+c+c2)

=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)

=> a2-ab+b2=1+c+c2

(a+b)2-3ab=(1-c)2+3c

=> -3ab=3c <=> -ab=c

Thay -ab = c vào a+b+c=1, ta có:

a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0

=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1

+) Nếu a=1 => b+c=0 <=> b=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015-b2015

=> A=a2015 => A=1 (2)

+) Nếu b=1 => a+c=0 <=>a=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015+-a2015

=> A=b2015 => A=1 (3)

Từ (1)(2)(3) => A = 1

Vậy A = 1 với a+b+c=1 và a3+b3+c3=1

b) B = x2-3x+2016

B=x2-3x+2,25+2013,75

B=(x-1,5)2+2013,75

Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75

=> B ≥ 2013,75

=> GTNN của B bằng 2013,75

Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5

Vậy GTNN của B bằng 2013,75 tại x = 1,5

22 tháng 10 2016

Bài 1:

a)\(3x^2+5x+2\)

\(=3\left(x+\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Dấu = khi \(x=-\frac{5}{6}\)

b)\(4x^2+y^2-2xy+7x-4y+10\)

tương tự có Min=\(\frac{21}{4}\Leftrightarrow x=-\frac{1}{2};y=\frac{3}{2}\)

22 tháng 10 2016

Câu 2: ở đây Câu hỏi của Phạm Thùy Linh - Toán lớp 8 | Học trực tuyến

19 tháng 8 2017

5040 bạn ơi

19 tháng 8 2017

Vì : a > 0 , b > 0 => a2 > 0 , b2 > 0 => a3 > 0 , b3 > 0

Mà : a + b = a2 + b2 = a3 + b3

Nên : a + b = 0 

=> a = 0 , b = 0

=> P = a2011 + b2015 = 0 + 0 = 0

AH
Akai Haruma
Giáo viên
26 tháng 10 2019

Lời giải:

Từ \(a+b=a^2+b^2=a^3+b^3\)

\(\Rightarrow \left\{\begin{matrix} a^2+b^2-a-b=0\\ a^3+b^3-a^2-b^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a(a-1)+b(b-1)=0\\ a^2(a-1)+b^2(b-1)=0\end{matrix}\right.\)

\(\Rightarrow a^2(a-1)-a(a-1)+b^2(b-1)-b(b-1)=0\)

\(\Leftrightarrow a(a-1)^2+b(b-1)^2=0\)

Với mọi $a,b>0$ thì $a(a-1)^2\geq 0; b(b-1)^2\geq 0$

Do đó để tổng của chúng bằng $0$ thì $a(a-1)^2=b(b-1)^2=0$

$\Rightarrow a=b=1$ (do $a,b>0$)

Khi đó $P=a^{2015}+b^{2015}=1+1=2$

AH
Akai Haruma
Giáo viên
3 tháng 10 2019

Lời giải:

Từ \(a+b=a^2+b^2=a^3+b^3\)

\(\Rightarrow \left\{\begin{matrix} a^2+b^2-a-b=0\\ a^3+b^3-a^2-b^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a(a-1)+b(b-1)=0\\ a^2(a-1)+b^2(b-1)=0\end{matrix}\right.\)

\(\Rightarrow a^2(a-1)-a(a-1)+b^2(b-1)-b(b-1)=0\)

\(\Leftrightarrow a(a-1)^2+b(b-1)^2=0\)

Với mọi $a,b>0$ thì $a(a-1)^2\geq 0; b(b-1)^2\geq 0$

Do đó để tổng của chúng bằng $0$ thì $a(a-1)^2=b(b-1)^2=0$

$\Rightarrow a=b=1$ (do $a,b>0$)

Khi đó $P=a^{2015}+b^{2015}=1+1=2$