\(\dfrac{1}{1+a}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

Ta có: \(\left(a+b\right)^2\ge4ab=16\Rightarrow a+b\ge4\Rightarrow a+b-4\ge0\)

\(P=\dfrac{1+b+1+a}{\left(1+a\right)\left(1+b\right)}=\dfrac{a+b+2}{ab+a+b+1}=\dfrac{a+b+2}{a+b+5}\)

\(P=\dfrac{3a+3b+6}{3\left(a+b+5\right)}=\dfrac{2\left(a+b+5\right)+\left(a+b-4\right)}{3\left(a+b+5\right)}\ge\dfrac{2\left(a+b+5\right)}{3\left(a+b+5\right)}=\dfrac{2}{3}\)

\(P_{min}=\dfrac{2}{3}\) khi \(a=b=2\)

AH
Akai Haruma
Giáo viên
2 tháng 8 2017

Lời giải:

Tìm max:

Áp dụng BĐT Bunhiacopxky:

\(A^2=(2x+\sqrt{5-x^2})^2\leq (x^2+5-x^2)(2^2+1)=25\)

\(\Rightarrow A\leq 5\)

Vậy \(A_{\max}=5\Leftrightarrow x=2\)

Tìm min:

ĐKXĐ: \(5-x^2\geq 0\Leftrightarrow -\sqrt{5}\leq x\leq \sqrt{5}\)

Do đó : \(A=2x+\sqrt{5-x^2}\geq 2x\geq -2\sqrt{5}\)

Vậy \(A_{\min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)

AH
Akai Haruma
Giáo viên
2 tháng 8 2017

Bài 2 bạn xem xem có viết nhầm đề bài không nhé.

\(A=\frac{3a}{2a-b}+\frac{3c}{2c-b}-2\)

Chỉ cần cho $b$ càng nhỏ thì giá trị của $A$ càng nhỏ rồi, mà lại không có điều kiện gì của $b$ ?

25 tháng 9 2019

trả lời lẹ cho tui cấy

3 tháng 8 2021

Ta có: \(P=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

sử dụng bđt cô-si có: \(a^2+\frac{1}{16a^2}\ge\frac{1}{2};b^2+\frac{1}{16b^2}\ge\frac{1}{2};\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}=\frac{4}{2ab}\)

Lại có: \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}\)

\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)\ge4\frac{4}{a^2+b^2+2ab}=\frac{16}{\left(a+b\right)^2}=16\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge8\)

\(\Rightarrow P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}=\frac{17}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

3 tháng 6 2018

Đặt \(x=2a\)và \(y=2b\)suy ra \(\hept{\begin{cases}x>0\\y>0\\x+y\le2\end{cases}}\)

Suy ra : \(A=\frac{x}{y+2}+\frac{y}{x+2}+\frac{2}{x+y}\)

\(\Rightarrow A=\frac{x^2}{xy+2x}+\frac{y^2}{xy+2y}+\frac{2}{x+y}\)

\(\Rightarrow A\ge\frac{\left(x+y\right)^2}{2\left(xy+x+y\right)}+\frac{2}{x+y}\)

\(\Rightarrow A\ge\frac{\left(x+y\right)^2}{2\left(\frac{\left(x+y\right)^2}{4}+\left(x+y\right)\right)}+\frac{2}{x+y}\)

Đặt \(t=x+y\)(   \(0< t\le2\))

Suy ra :

\(\Rightarrow A\ge\frac{t^2}{\frac{t^2}{2}+2t}+\frac{2}{t}\)

\(\Rightarrow A\ge\frac{2t}{t+4}+\frac{2}{t}\)

\(\Rightarrow A\ge\frac{2t}{t+4}+\frac{4}{3}.\frac{1}{t}+\frac{2}{3}.\frac{1}{t}\)

\(\Rightarrow A\ge2\sqrt{\frac{2t}{t+4}.\frac{4}{3}.\frac{1}{t}}+\frac{2}{3}.\frac{1}{t}\)

\(\Rightarrow A\ge2\sqrt{\frac{8}{3\left(t+4\right)}}+\frac{2}{3}.\frac{1}{t}\)

\(\Rightarrow A\ge2\sqrt{\frac{8}{3.\left(2+4\right)}}+\frac{2}{3}.\frac{1}{2}=\frac{5}{3}\)

"=" xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
2 tháng 9 2017

Bài 1:

Áp dụng BĐT Bunhiacopxky:

\(M^2=(a\sqrt{9b(a+8b)}+b\sqrt{9a(b+8a)})^2\)

\(\leq (a^2+b^2)(9ab+72b^2+9ab+72a^2)\)

\(\Leftrightarrow M^2\leq (a^2+b^2)(72a^2+72b^2+18ab)\)

Áp dụng BĐT AM-GM: \(a^2+b^2\geq 2ab\Rightarrow 18ab\leq 9(a^2+b^2)\)

Do đó, \(M^2\leq (a^2+b^2)(72a^2+72b^2+9a^2+9b^2)=81(a^2+b^2)^2\)

\(\Leftrightarrow M\leq 9(a^2+b^2)\leq 144\)

Vậy \(M_{\max}=144\Leftrightarrow a=b=\sqrt{8}\)

Bài 6:

\(a+\frac{1}{a-1}=1+(a-1)+\frac{1}{a-1}\)

\(a>1\rightarrow a-1>0\). Do đó áp dụng BĐT Am-Gm cho số dương\(a-1,\frac{1}{a-1}\) ta có:

\((a-1)+\frac{1}{a-1}\geq 2\sqrt{\frac{a-1}{a-1}}=2\)

\(\Rightarrow a+\frac{1}{a-1}=1+(a-1)+\frac{1}{a-1}\geq 3\) (đpcm)

Dấu bằng xảy ra khi \(a-1=1\Leftrightarrow a=2\)

AH
Akai Haruma
Giáo viên
2 tháng 9 2017

Bài 3:

Xét \(\sqrt{a^2+1}\). Vì \(ab+bc+ac=1\) nên:

\(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)

\(\Rightarrow \sqrt{a^2+1}=\sqrt{(a+b)(a+c)}\)

Áp dụng BĐT AM-GM có: \(\sqrt{(a+b)(a+c)}\leq \frac{a+b+a+c}{2}=\frac{2a+b+c}{2}\)

hay \(\sqrt{a^2+1}\leq \frac{2a+b+c}{2}\)

Hoàn toàn tương tự với các biểu thức còn lại và cộng theo vế:

\(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\leq \frac{2a+b+c}{2}+\frac{2b+a+c}{2}+\frac{2c+a+b}{2}=2(a+b+c)\)

Ta có đpcm. Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Bài 4:

Ta có:

\(A=\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2\)

\(\Leftrightarrow A+\frac{1}{4}=2a+\frac{b+a}{4a}+b^2=2a+b+\frac{b+a}{4a}+b^2-b\)

\(a+b\geq 1, a>0\) nên \(A+\frac{1}{4}\geq a+1+\frac{1}{4a}+b^2-b\)

Áp dụng BĐT AM-GM:

\(a+\frac{1}{4a}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\Rightarrow A+\frac{1}{4}\geq 2+b^2-b=\left(b-\frac{1}{2}\right)^2+\frac{7}{4}\geq \frac{7}{4}\)

\(\Leftrightarrow A\geq \frac{3}{2}\).

Vậy \(A_{\min}=\frac{3}{2}\Leftrightarrow a=b=\frac{1}{2}\)

22 tháng 2 2018

Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)

                                      \(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)

                                        \(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)

Cộng 3 cái vào, ta có 

A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)

Vậy A min = 24 

Neetkun ^^

22 tháng 2 2018

bạn tìm ra dấu= xảy ra khi nào

Câu 4: 

Để C chia hết cho D thì \(x^4+a⋮x^2+4\)

\(\Leftrightarrow x^4-16+a+16⋮x^2+4\)

=>a+16=0

hay a=-16

10 tháng 4 2017

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

10 tháng 4 2017

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c