Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a>b>0\)
\(\Rightarrow a^2>b^2\)
\(\Rightarrow a^2+a>b^2+b\)
\(\Rightarrow a^2+a+1>b^2+b+1\)
\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)
\(\Rightarrow x< y\)
\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)
\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)
Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)
\(A=\frac{1+a+a^2+...+a^{n-1}}{1+a+a^2+...+a^n}=1+\frac{1}{a^n}\)
\(B=\frac{1+b+b^2+...+b^{n-1}}{1+b+b^2+...+b^n}=1+\frac{1}{b^n}\)
Vì \(a>b\) nên \(1+\frac{1}{a^n}< 1+\frac{1}{b^n}\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Ta có A = 2018.2020 + 2019.2021
= (2020 - 2).2020 + 2019.(2019 + 2)
= 20202 - 2.2020 + 20192 + 2.2019
= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B
=> A = B
b) Ta có B = 964 - 1= (932)2 - 12
= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1)
(932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80
mà A = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10
=> A < B
c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)
=> A < B
d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)
=> A < B
Do a,b,c đối xứng , giả sử \(a\ge b\ge c\) \(\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}\ge\frac{b}{a+c}\ge\frac{c}{a+b}\end{cases}}\)
Áp dụng BĐT Trư - bê - sép , ta có :
\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{b+c}\ge\frac{a^3+b^3+c^3}{3}.\left(\frac{a}{b+C}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)
\(vậy\) \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{1}{2}\)( Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Chebyshev như vầy nhé :
Ta có :
\(3.\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\left(a^2+b^2+c^2\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Áp dụng bất đẳng thức Nesbit , ta có :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Suy ra : \(3.\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\frac{3}{2}\)
<=> \(\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\frac{1}{2}\)
Đẳng thức xảy ra <=> a = b = c = \(\frac{1}{\sqrt{3}}\)
1)Ta co
n5-5n3+4n
=n(n4-5n2+4)
=n(n4-n2-4n2+4)
=n(n2(n2-1)-4(n2-1)
=n(n2-4)(n2-1)
=n(n-1)(n+1)(n+2)(n-2)
vi n(n-1)(n+1)(n-2)(n+2) la h 5 so tu nhien lien tiep nen chia het cho 3,5,8 ma 3.5.8=120
=>n5-5n3+4n chia het 120
sai đề rồi bạn.\(\frac{a}{b}>\frac{a+c}{b+c}\) với \(a>b\) mới đúng nha.
Ta có:\(A=\frac{10^{17}+1}{10^{16}+1}>\frac{10^{17}+1+9}{10^{16}+1+9}=\frac{10^{17}+10}{10^{16}+10}=\frac{10\left(10^{16}+1\right)}{10\left(10^{15}+1\right)}=\frac{10^{16}+1}{10^{15}+1}\)
\(\Rightarrow A>B\)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Xét \(a+b\ge2\sqrt{ab}\Leftrightarrow\frac{1}{2}\ge\sqrt{ab}\Leftrightarrow\frac{1}{4}\ge ab\)
\(\left(a+\frac{1}{a}\right)+\left(b+\frac{1}{b}\right)\)
\(=1+\frac{b+a}{ab}\)
\(=1+\frac{1}{ab}\ge1+\frac{1}{\frac{1}{4}}=1+4=5\)
=> đề sai