Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
Bài này dùng công thức đem ra so sánh là ra ngay ấy mà.
Vì a<0,b>0 nên phân số \(\frac{a}{b}\)là phân số âm.
Với phân số âm thì khi thêm cùng 1 số vào cả tử và mẫu thì phân số mới sẽ nhỏ hơn phân số cũ.
\(=>\frac{a}{b}>\frac{a+2012}{b+2012}\)
Chúc em học tốt^^
\(\frac{a}{b}=1\Rightarrow\frac{a}{b}=\frac{a+2001}{b+2001}\)
\(\frac{a}{b}>1\Rightarrow\frac{a}{b}-1=\frac{a-b}{b}>\frac{a-b}{b+2001}=\frac{a+2001}{b+2001}-1\Rightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)
\(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow1-\frac{a}{b}=\frac{b-a}{b}>\frac{b-a}{b+2001}=1-\frac{a+2001}{b+2001}\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
tíc mình nha
Để so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\), ta đi so sánh hai số \(a\left(b+1\right)\)và \(b\left(a+1\right)\).
Xét hiệu:
\(a\left(b+1\right)-b\left(a+1\right)=ab+a-\left(ab+b\right)=a-b\)
Ta có 3 trường hợp, với điều kiện b > 0:
Trường hợp 1: Nếu \(a-b=0\Leftrightarrow a=b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)=0\Leftrightarrow a\left(b+1\right)=b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}=\frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}=\frac{a+1}{b+1}\)
Trường hợp 2: Nếu \(a-b< 0\Leftrightarrow a< b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)< 0\Leftrightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}< \frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Trường hợp 3: Nếu \(a-b>0\Leftrightarrow a>b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)>0\Leftrightarrow a\left(b+1\right)>b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}>\frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}>\frac{a+1}{b+1}\)
+\(\frac{a}{b}=1\Leftrightarrow a=b\Leftrightarrow\frac{a}{b}=\frac{a+2016}{b+2016}\)
+\(\frac{a}{b}>1\Leftrightarrow a>b\Leftrightarrow\frac{a}{b}-1=\frac{a-b}{b}>\frac{a-b}{b+2016}=\frac{a+2016}{b+2016}-1\)=> \(\frac{a}{b}>\frac{a+2016}{b+2016}\)
+\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow1-\frac{a}{b}=\frac{b-a}{b}>\frac{b-a}{b+2016}=1-\frac{a+2016}{b+2016}\)=>\(\frac{a}{b}< \frac{a+2016}{b+2016}\)
Ta có a/b-1=a-b/b ; a+2001/b+2001-1=a+2001-b-2001/b+2001=a-b/b+2001
Hai phân số trên cùng tử mà b+2001>b nên a-b/b+2001<a-b/b hay a+2001/b+2001<a/b
Đào Nhật Minh
\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+2012a}{b^2+2012b}\)
\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ba+2012a}{b^2+2012b}\)
Đến đây bạn xét các TH nha!