Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 90.a + 33.b chia hết cho 3
=30+30.a+30+3.b
=30.(3+1+1)ab
=30.5ab
=150ab
150 chia hết cho 3 hay 150ab chia hết cho 3
vậy .............
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
1033 + 8 có tận cùng là 8 => 1033 + 8 chia hết cho 2
1033 + 8 có tổng các chữ số là 9 => 1033 + 8 chia hết cho 9
1010 + 14 có tận cùng là 4 => 1010 + 14 chia hết cho 2
1010 + 14 có tổng các chữ số là 15 => 1010 + 14 chia hết cho 3
a)đề sai, vì 10...15 ko chia hết cho 2,3
b)B=10K+62(K thuộc N*)
B=10...0+62(K số 0)=10...62(k-2 số 0)
Vì 2 chia hết cho 2 nên 10...62(k-2 số 0) chia hết cho 2 hay B chia hết cho 2
B có: 1+0+...+0+6+2(k số số 0)=1+6+2=7+2=9 chia hết cho 9
nên B chia hết cho 9
Vậy B chia hết cho 2;9
1)
a)10100+5 chia hết cho 3 và 5 vì
10100=1000.....(100 số 0) => có tổng cacs chữ số =1
=>10100+5 có tổng các chữ số = \(1+5⋮3\)
10100+5 = 100....05(99 số 0)
vì có tận cùng =5 nên =>\(10^{100}+5⋮5\)
b) bn làm tương tự nhé