Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử ab và (a2+ab+b2) không phải là 2 số nguyên tố cùng nhau
Gọi d là ước chung của ab và (a2+ab+b2)
\(\Rightarrow\left\{{}\begin{matrix}ab⋮d\\a^2+ab+b^2⋮d\end{matrix}\right.\)
Ta có ab⋮d và (a,b)=1 nên ta có 2 trường hợp
TH1:a⋮d\(\Leftrightarrow a^2⋮d\)
Mà ab⋮d và \(a^2+ab+b^2⋮d\)
Suy ra \(b^2⋮d\)\(\Leftrightarrow b⋮d\)(vô lý với (a,b)=1)
TH2:b⋮d\(\Leftrightarrow b^2⋮d\)
Mà ab⋮d và \(a^2+ab+b^2⋮d\)
Suy ra \(a^2⋮d\)\(\Leftrightarrow a⋮d\)(vô lý với (a,b)=1)
Vậy trái với giả sử\(\Rightarrow\)ab và (a2+ab+b2) là 2 số nguyên tố cùng nhau\(\Rightarrow\left(ab,a^2+ab+b^2\right)=1\Rightarrow\dfrac{ab}{a^2+ab+b^2}\) là phân số tối giản
Chỗ \(b^2\vdots d\Leftrightarrow b\vdots d\) là sai bạn nhé. Thử ngay $b=4$, $d=8$ thấy ngay.
Trong TH này bạn nên gọi $d$ là ước nguyên tố lớn nhất của $ab$ và $a^2+ab+b^2$
Khi đó ta mới có tính chất \(b^2\vdots d\Rightarrow b\vdots d\)
Lời giải:
Ta có:
\(P=\frac{\sqrt{x}(\sqrt{x^3}-8)}{x+2\sqrt{x}+4}-\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}\)
\(=\frac{\sqrt{x}(\sqrt{x}-2)(x+2\sqrt{x}+4)}{x+2\sqrt{x}+4}-\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}=\sqrt{x}(\sqrt{x}-2)-(\sqrt{x}+1)+2(\sqrt{x}+2)\)
\(=x-2\sqrt{x}-\sqrt{x}-1+2\sqrt{x}+4=x-\sqrt{x}+3\)
$=(\sqrt{x}-\frac{1}{2})^2+\frac{11}{4}\geq \frac{11}{4}$ với mọi $x>0; x\neq 4$
$\Rightarrow \frac{a}{b}=\frac{11}{4}$
Vì $a,b$ nguyên dương và $\frac{a}{b}$ tối giản nên $a=11; b=4$
$\Rightarrow a+b=11+4=15$
gọi d=( n+1, 2n+1)
=> n+1 chia hết cho d=> 2n+2 chia hết cho d
=>2n+1 chia hết cho d=> 2n+1 chia hết cho d
=> ( 2n+2)-( 2n+1) chia hết cho d
=> 1 chia hết cho d
=> d= -1 hoặc +1
=> phân số n+1/2n+1 là phân số tối giản
b, giải
Gọi d là \(UCLN\left(n+1,n+2\right)\)
\(\Rightarrow\orbr{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(n+1,n+2\right)=1\)
\(\Rightarrow\frac{n+1}{n+2}\) là phân số tối giản (ĐPCM)
Do \(\frac{a}{b}\) tối giản \(\RightarrowƯCLN\left(a;b\right)=1\) (1)
Giả sử \(\frac{ab}{a+b}\) không tối giản
Gọi \(ƯCLN\left(ab;a+b\right)=d\ne1\Rightarrow\left\{{}\begin{matrix}ab⋮d\\\left(a+b\right)⋮d\end{matrix}\right.\)
Do \(a;b\) nguyên tố cùng nhau mà \(ab⋮d\Rightarrow\left[{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\)
- Nếu \(a⋮d\) lại có \(a+b⋮d\Rightarrow b⋮d\RightarrowƯCLN\left(a;b\right)=d\ne1\) mâu thuẫn giả thiết (1)
- Nếu \(b⋮d\) mà \(a+b⋮d\Rightarrow a⋮d\RightarrowƯCLN\left(a;b\right)=d\ne1\) cũng mâu thuẫn (1)
Vậy điều giả sử là sai \(\Rightarrow\frac{ab}{a+b}\) tối giản