\(⋮\)17 \(\Leftrightar...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sorry anh nha em mới học lớp 5 thôi !

sory anh nha em mới chỉ học lớp 5 mà thôi xin anh thông cảm !

Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(17⋮17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(3a+2b⋮17\Rightarrow2.\left(10a+b\right)⋮17\)
Mà (2,10) = 1\(\Rightarrow10a+b⋮17\)
⇒ 3a+2b ⋮ 17 ⇌ 10a + b⋮ 17 ( đpcm )

AH
Akai Haruma
Giáo viên
3 tháng 2 2018

Lời giải:

Đây là bài chứng minh 2 chiều (\(\Leftrightarrow )\). Vì vậy, làm như bạn Thủy thì chỉ chứng minh được một chiều thuận thôi.

Ta có:

\(3a+2b\vdots 17\)

\(\Leftrightarrow 9(3a+2b)\vdots 17\) (do \(9,17\) nguyên tố cùng nhau)

\(\Leftrightarrow 27a+18b\vdots 17\)

\(\Leftrightarrow 27a+18b-17(a+b)\vdots 17\)

\(\Leftrightarrow 10a+b\vdots 17\)

Bài toán hai chiều được chứng minh.

\(\left(x^2+5\right)\left(x-3\right)>0\)

Th1 : \(\hept{\begin{cases}x^2+5>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>-5\\x< 3\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x^2+5< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x^2< -5\\x>3\end{cases}}}\)

12 tháng 12 2017

a) \(\left(x^2+5\right)\left(x-3\right)>0\Leftrightarrow x-3>0\) (do \(x^2+5>0,\forall x\in R\)).
\(\Leftrightarrow x>3\).
b) \(\left(-x^2-17\right).\left(x+1\right)>0\Leftrightarrow-\left(x^2+17\right).\left(x+1\right)>0\)\(\Leftrightarrow-\left(x+1\right)>0\) ( do \(x^2+17>0\) ).
\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\).
c) \(-2\left(7-x\right)< 0\Leftrightarrow2x-14< 0\)\(\Leftrightarrow2x< 14\)\(\Leftrightarrow x< 7\).
d) \(\left(x-2\right).\left(x+2\right)< 0\Leftrightarrow x^2+2x-2x-4< 0\)\(\Leftrightarrow x^2-4< 0\) \(\Leftrightarrow x^2< 4\)\(\Leftrightarrow\left|x\right|< 2\)\(\Leftrightarrow-2< x< 2\).

4 tháng 4 2018

(Do phải chứng minh \(3a+2b⋮17\Leftrightarrow10a+b⋮17\)nên ta phải chứng minh hai chiều nhé)

Ta có : \(10a+b=17\Leftrightarrow2\left(10a+b\right)⋮17\)

Ta lại có : \(2\left(10a+b\right)-\left(3a+2b\right)\)

\(=20a+2b-3a-2b\)

\(=17a⋮17\)mà \(2\left(10a+b\right)⋮17\)

\(\Rightarrow3a+2b⋮17\)

Ta có : \(2\left(10a+b\right)-\left(3a+2b\right)\)

\(=20a+2b-3a-2b\)

\(=17a⋮17\)mà \(3a+2b⋮17\)

\(\Rightarrow2\left(10a+b\right)⋮17\)

Do \(\left(2,17\right)=1\Rightarrow10a+b⋮17\)

Vậy \(3a+2b⋮17\Leftrightarrow10a+b⋮17\)

3 tháng 1 2018

Do \(b^2=ac\)

=>\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}\)

                     =\(\frac{a\left(a+c\right)}{c\left(a+c\right)}\)

                      \(\frac{a}{c}\)

22 tháng 9 2018

a, \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{6}+\frac{2y}{6}=\frac{1+2y}{6}\)

\(\Rightarrow1\cdot6=x\cdot\left(1+2y\right)\)

\(\Rightarrow x\left(1+2y\right)=6\)

\(\Rightarrow x;1+2y\inƯ\left(6\right)=\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

ta có bảng :

x-11-22-33-66
1+2y-66-33-22-11
yloạiloại2-1loạiloại10

vậy_

phần b tương tự

12 tháng 7 2019

  Ta có : a³ + b³ + c³ = 3abc 
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0 
Hoặc a + b + c = 0 
Hoặc (a² + b² + c² - ab - bc - ca) = 0 
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b) 
=> A = [1 - (b +c)/b][1 - (a + c)/c] [1 - (a + b)/a] 
=> A =[1 - 1 - c/b] [1 - 1 - a/c] [1 - 1 - b/a] 
=> A = (-c/b)(-a/c)(-b/a) = -1 
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0 
=> a - b = b - c = c - a = 0 hay a = b = c 
=> A = (1 + 1)(1 + 1)(1+ 1) = 8

3 tháng 6 2017

2.

\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) . Ta có : +,ad < bc

\(\Rightarrow\)ad+ab < bc +ab (Cùng thêm ab vào 2 vế)

\(\Rightarrow\)a(b+d) < b(a+c)

\(\Rightarrow\)\(\dfrac{a}{b}\)< \(\dfrac{a+c}{b+d}\)

+, ad < bc

\(\Rightarrow\)ad + cd < bc + cd ( Cùng thêm cd vào 2 vế)

\(\Rightarrow\)d(a+c) < c(b+d)

\(\Rightarrow\)\(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) Vậy \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

3 tháng 6 2017

2.

ta có

\(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow ad< bc\)

xét

\(\dfrac{a}{b}=\dfrac{a\left(b+d\right)}{b\left(b+d\right)}=\dfrac{ab+ad}{b\left(b+d\right)}\)

\(\dfrac{a+c}{b+d}=\dfrac{b\left(a+c\right)}{b\left(b+d\right)}=\dfrac{ab+bc}{b\left(b+d\right)}\)

\(\dfrac{ab+ad}{b\left(b+d\right)}< \dfrac{ab+bc}{b\left(b+d\right)}\left(ad< bc\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)

xét

\(\dfrac{a+c}{b+d}=\dfrac{d\left(a+c\right)}{d\left(b+d\right)}=\dfrac{ad+cd}{d\left(b+d\right)}\)

\(\dfrac{c}{d}=\dfrac{c\left(b+d\right)}{d\left(b+d\right)}=\dfrac{bc+cd}{d\left(b+d\right)}\)

\(\dfrac{ad+cd}{d\left(b+d\right)}< \dfrac{bc+cd}{d\left(b+d\right)}\left(ad< bc\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)

từ (1) và (2) => ĐPCM