Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\)> 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Xét hai trường hợp b nguyên dương và b nguyên âm.
_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.
_xét b nguyên âm
Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương
+) Với a , b cùng dấu , ta có :
\(\frac{a}{b}=\frac{-a}{-b}>0\)với mọi a , b thuộc Z ; b khác 0
+) Với a , b khác dấu ta có :
\(\hept{\begin{cases}\frac{a}{-b}< 0\\\frac{-a}{b}< 0\end{cases}}\)với mọi a , b thuộc Z ; b khác 0
Vậy với a,b cùng dấu thì \(\frac{a}{b}>0\); với a,b khác dấu thì \(\frac{a}{b}< 0\)
Ta có:
(+):(+)=(+)
(-):(-)=(+)
(+):(-)=(-)
(-):(+)=(-)
Tự thao khảo nhé
a, b cùng dấu thì a/b > 0 ..dễ hiểu thôi nếu cả a, b đều dương thì a/d dĩ nhiên dương, nếu cả a,b đều âm thì a/b cũng dương vì -a/-b = a/b (nhân hai vế với trừ 1)
a, b khác dấu thì a/b luôn âm nên a/b < 0
Ta có :
Khi a, b cùng dấu :
Nếu a > 0 và b > 0 suy ra :
Nên : vậy
Nếu a < 0 và b < 0 suy ra :
Nên : vậy
Khi a, b khác dấu :
Nếu a > 0 và b < 0 suy ra :
Nên : vậy
Nếu a < 0 và b > 0 suy ra :
Nên : vậy
a, b cùng dấu thì a/b > 0 ..dễ hiểu thôi nếu cả a, b đều dương thì a/d dĩ nhiên dương, nếu cả a,b đều âm thì a/b cũng dương vì -a/-b = a/b (nhân hai vế với trừ 1)
a, b khác dấu thì a/b luôn âm nên a/b < 0
Nếu \(a,b\) cùng dấu thì \(\frac{a}{b}>0\)
\(\Rightarrow x>0\)
Cho a,b ∈ Z ,b khác 0;x=a/b
Nếu a; b cùng dấu thì a/b≥0
`=>x≥0