Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
Bài này dùng công thức đem ra so sánh là ra ngay ấy mà.
Vì a<0,b>0 nên phân số \(\frac{a}{b}\)là phân số âm.
Với phân số âm thì khi thêm cùng 1 số vào cả tử và mẫu thì phân số mới sẽ nhỏ hơn phân số cũ.
\(=>\frac{a}{b}>\frac{a+2012}{b+2012}\)
Chúc em học tốt^^
Nếu
a < b
=) \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
Nếu a > b
=) \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Nếu a = b
=) \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
Xét tích \(a\left(b+2001\right)=ab+2001a\\ b\left(a+2001\right)=ab+2001b.\)Vì \(b>0\)nên \(b+2001>0\).
Nếu \(a>b\) thì \(ab+2001a>ab+2001b\\ a\left(b+2001\right)>b\left(a+2001\right)\)
\(\frac{\Rightarrow a}{b}>\frac{a+2001}{b+2001}\)
Nếu \(a< b\) thì \(\frac{\Rightarrow a}{b}< \frac{a+2001}{b+2001}\)
Nếu \(a=b\) thì rõ ràng \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
Quy đồng mẫu số:
\(\frac{a}{b}\)= \(\frac{a\left(b+2001\right)}{b\left(b+2001\right)}\)=\(\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}\)=\(\frac{\left(a+2001\right)b}{\left(b+2001\right)b}\)=\(\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b>0 nên mẫu số của 2 phân số trên dương.Chỉ cần so sánh tử số
so sánh ab+2001a vớiab+2001b
-Nếu a<b =>Tử số phân số thứ nhất < tử số phân số thứ 2
=> \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
-Nếu a=b => 2 phân số bằng 1
-Nếu a>b => tử số phân số thứ nhất lớn hơn tử số phân số thứ 2
=> \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
Ta có:
( a + 2001 ) .b = a.b + b.2001 ( 1 )
( b . 2001 ) . a = a.b + a.2001 ( 2 )
Xét 3 trường hợp :
TH1: a=b
Từ ( 1 ) và ( 2 ) => b.2001 = a.2001 => a.b + b.2001 = a.b + a.2001 => ( a + 2001 ) .b = ( b + 2001 ) .a => \(\frac{a}{b}\)= \(\frac{a+2001}{b+2001}\)
TH2: a<b
Từ ( 1 ) và ( 2 ) => b.2001 > a.2001 => a.b + b.2001 > a.b + a.2001 => ( a + 2001 ) .b > ( b + 2001 ) .a => \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
TH3: a>b
Từ ( 1 ) và ( 2 ) => b.2001 < a.2001 => a.b + b.2001 < a.b + a.2001 => ( a + 2001 ) .b < ( b + 2001 ) .a => \(\frac{a}{b}\)> \(\frac{a+2001}{b+2001}\)
ủng hộ nhé
Vì a<0 ; b > 0 => \(\frac{a}{b}<0\) (1)
và \(\frac{a+2012}{a+2012}=1\)mà 1 > 0 (2)
Từ (1) và (2)
=> \(\frac{a}{b}<\frac{a+2012}{a+2012}\)
\(\frac{a}{b}-\frac{a+2001}{b+2001}=\frac{a\left(b+2001\right)-b\left(a+2001\right)}{b\left(b+2001\right)}=\frac{2001\left(a-b\right)}{b\left(b+2001\right)}.\)
Ta có \(b>0\Rightarrow b\left(b+2001\right)>0\)
+ Nếu \(a>b\Rightarrow2001\left(a-b\right)>0\Rightarrow\frac{2001\left(a-b\right)}{b\left(b+2001\right)}>0\Rightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)
+ Nếu \(a< b\Rightarrow2001\left(a-b\right)< 0\Rightarrow\frac{2001\left(a-b\right)}{b\left(b+2001\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
Xét: a(b+2001)= b(a+2001)
ab+2001a=ab+2001b
Xảy ra các trường hợp:
+) Nếu a>b => ab+2001a > ab+2001b
=> a/b > a+2001/b+2001
+) Nếu a<b => ab+2001a < ab+2001b
=> a/b > a+2001/b+2001
+) Nếu a=b => ab+ 2001a = ab + 2001b
=> a/b = a+2001/b+2001