Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.\(ĐK:x;y\in Z^+;x;y\ne0\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{5}{x}+\dfrac{5}{y}=1\)
\(\Leftrightarrow\dfrac{5}{x}=1-\dfrac{5}{y}\)
\(\Leftrightarrow\dfrac{5}{x}=\dfrac{y-5}{y}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{y-5}\)
\(\Leftrightarrow x=\dfrac{5y}{y-5}\)
\(\Leftrightarrow x=5+\dfrac{25}{y-5}\) ( bạn chia \(5y\) cho \(y-5\) ý )
Để x;y là số nguyên dương thì \(25⋮y-5\) hay \(y-5\in U\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
TH1:
\(y-5=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=30\end{matrix}\right.\) ( tm ) ( bạn thế y=6 vào \(x=5+\dfrac{25}{y+5}\) nhé )
Xét tương tự, ta ra được nghiệm nguyên dương của phương trình:
\(\left\{{}\begin{matrix}x=30\\y=6\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=6\\y=30\end{matrix}\right.\)
Câu a mik ko bt nên bạn tham khảo nhé:
https://hoc24.vn/cau-hoi/cho-a-b-c-0-va-day-ti-so-dfrac2bc-aadfrac2c-babdfrac2ab-cctinh-p-dfracleft3a-2brightleft3b-2crightleft.177725456910
Đề sai
Ta có : \(\hept{\begin{cases}a+3b=8\\2a+3c=7\end{cases}}\Rightarrow\left(a+3b\right)+\left(2a+3c\right)=8+7\)
\(\Leftrightarrow a+3b+2a+3c=15\)
\(\Leftrightarrow\left(2a+a\right)+3b+3c=15\)
\(\Leftrightarrow3a+3b+3c=15\)
\(\Leftrightarrow3\left(a+b+c\right)=15\)
\(\Leftrightarrow a+b+c=15\div3\)
\(\Leftrightarrow a+b+c=5\)