Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
c)(x2+x)2-2(x2+x)-15
đặt x2+x=a ta có
a2-2a-15
=a2+3a-5a-15
=(a2+3a)-(5a+15)
=a(a+3)-5(a+3)
=(a+3)(a-5)
thay a=x2+x
(x2+x+3)(x2+x-5)
a, \(4x+6y-x^2-y^2+2\)
\(=-\left(x^2+y^2-4x-6y-2\right)\)
\(=-\left(x^2-2x-2x+4+y^2-3y-3y+9-15\right)\)
\(=-\left[\left(x^2-2x\right)-\left(2x-4\right)+\left(y^2-3y\right)-\left(3y-9\right)-15\right]\)
\(=-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2-15\ge-15\)
\(\Rightarrow-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]\le15\)
Để \(-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]=15\) thì \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy GTLN của biểu thức là 15 đạt được khi và chỉ khi \(x=2;y=3\)
Câu b làm tương tự! Chúc bạn học tốt!!!
Thui đang chán không có bài :) làm lun:
b, \(-x^2-4y^2-z^2+2x+12y-4z-10\)
\(=-\left(x^2+4y^2+z^2-2x-12y+4z+10\right)\)
\(=-\left(x^2-x-x+1+4y^2-6y-6y+9+z^2+2z+2z+4-4\right)\)
\(=-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]\)
Với mọi giá trị của \(x;y;z\in R\) ta có:
\(\left(x-1\right)^2\ge0;\left(2y-3\right)^2\ge0;\left(z+2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\ge-4\)
\(\Rightarrow-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]\le4\)
với mọi giá trị của \(x;y;z\in R\).
Để \(-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]=4\) thì
\(\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y-3\right)^2=0\\\left(z+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
Vậy .....
Chúc bạn học tốt!!!
\(x^2-x+\dfrac{1}{2}=x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{1}{2}\\ =\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}+\dfrac{1}{2}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
ta có: \(\left(x-\dfrac{1}{2}^{ }\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}>0\forall x\left(vì\dfrac{1}{4}>0\right)\)
hay \(x^2-x+\dfrac{1}{2}>0\forall x\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt[]{\dfrac{1}{ab}}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt[]{ab}}\) (1)
Ta có \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a-2\sqrt[]{ab}+b\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt[]{ab}\)
\(\Rightarrow\dfrac{a+b}{2}\le\dfrac{2\sqrt[]{ab}}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}\le\sqrt[]{ab}\)
\(\Rightarrow\dfrac{2}{\dfrac{a+b}{2}}\le\dfrac{2}{\sqrt[]{ab}}\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{2}{\sqrt[]{ab}}\) (2)
Từ (1) và (2) suy ra\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt[]{ab}}\ge\dfrac{4}{a+b}\)
hay \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
giả sử \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(1) đúng
\(\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\\ \Rightarrow\left(a+b\right)^2\ge4ab\)
\(a^2+2ab+b^2\ge4ab\)
trừ hai vế với 4ab, ta được:
\(a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(2)
vì bất đẳng thức (2) luôn đúng nên bất đẳng thức (1) luôn đúng
dấu "=" xảy ra khi và chỉ khi a=b
a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y
=>x2+2y2+ 1 ≥ 1
=>Phân thức trên luôn có nghĩa