\(\dfrac{2a}{a+b}+\dfrac{b}{a-b}=2\)

Tính A = 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

\(\frac{2a}{a+b}+\frac{b}{a-b}=2< =>2\left(a-b\right)a+b\left(a+b\right)=2\left(a-b\right)\left(a+b\right).\)

\(< =>2a^2-2ab+ab+b^2=2a^2-2b^2\)

\(< =>3b^2-ab=0< =>b\left(3b-a\right)=0=>\orbr{\begin{cases}b=0\\3b-a=0\end{cases}}\)\(< =>\orbr{\begin{cases}b=0\\a=3b\end{cases}=>\orbr{\begin{cases}A=3\\A=1\end{cases}}}\)

12 tháng 5 2017

\(\dfrac{1}{2a-1}=\dfrac{2}{3b-1}=\dfrac{3}{4c-1}\Rightarrow\dfrac{2a-1}{1}=\dfrac{3b-1}{2}=\dfrac{4c-1}{3}\)

\(\Rightarrow\dfrac{36a-18}{18}=\dfrac{24b-8}{16}=\dfrac{12c-3}{9}\)và 3a+2b-c=4

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{36a-18}{18}=\dfrac{24b-8}{16}=\dfrac{12c-3}{9}=\dfrac{36a-18+24b-8-12c+3}{18+16-9}=\dfrac{12\left(3a+2b-c\right)-23}{25}=\dfrac{12\cdot4-23}{25}=1\)

=>2a-1=1<=>a=1

3b-1=2<=>b=1

4c-1=3<=>c=1

Vậy...

12 tháng 5 2017

thanks nhìu nha

4 tháng 5 2017

\(\dfrac{a}{b}=\dfrac{2}{3}\)=>3a=2b ; a=\(\dfrac{2}{3}b\)

=>\(\dfrac{3a+2b}{a+5b}=\dfrac{2b+2b}{\dfrac{2}{3}b+5b}=\dfrac{4b}{\dfrac{2}{3}b+\dfrac{15}{3}b}=\dfrac{4b}{\dfrac{17}{3}b}=\dfrac{12}{17}\)

12 tháng 5 2017

\(\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow b=\dfrac{3}{2}a\)

\(\dfrac{a}{2}=\dfrac{c}{5}\Rightarrow c=\dfrac{5}{2}a\)

=>B=\(\dfrac{a+7\cdot\left(\dfrac{3}{2}a\right)-2\cdot\left(\dfrac{5}{2}a\right)}{3a+2\cdot\left(\dfrac{3}{2}a\right)-\dfrac{5}{2}a}=\dfrac{a+\dfrac{21}{2}a-5a}{3a+3a-\dfrac{5}{2}a}=\dfrac{\dfrac{13}{2}a}{\dfrac{7}{2}a}=\dfrac{13}{7}\)

12 tháng 5 2017

bài này khó thế

23 tháng 6 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

Ta có:

Nếu:

\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)

\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)

\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)

16 tháng 3 2017

b)B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)

B<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

B<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

B<\(1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{8}+\dfrac{1}{8}\right)-\dfrac{1}{9}\)

B<1-\(\dfrac{1}{9}\)

B<\(\dfrac{8}{9}\)(1)

ta có:

B>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

B>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{10}\)

B>\(\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{9}+\dfrac{1}{9}\right)-\dfrac{1}{10}\)

B>\(\dfrac{1}{2}-\dfrac{1}{10}\)

B>\(\dfrac{2}{5}\)

5 tháng 7 2017

Ta có: \(\dfrac{2a+b}{5}\in Z\left(a,b\in Z\right)\)

\(\Rightarrow2a+b⋮5\Rightarrow\left\{{}\begin{matrix}2a⋮5\\b⋮5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a⋮5\\b⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a⋮5\\b⋮5\end{matrix}\right.\)

Suy ra: \(3a-b⋮5\)

Hay: \(\dfrac{3a-b}{5}\in Z\left(a,b\in Z\right)\)