Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$3a^2+3b^2=10ab$
$\Leftrightarrow 3a^2+3b^2-10ab=0$
$\Leftrightarrow (3a-b)(a-3b)=0$
$\Leftrightarrow b=3a$ hoặc $a=3b$.
Nếu $b=3a$ thì:
$P=\frac{3a-a}{3a+a}=\frac{2a}{4a}=\frac{1}{2}$
Nếu $a=3b$ thì:
$P=\frac{b-3b}{b+3b}=\frac{-2b}{4b}=\frac{-1}{2}$
\(10a^2+ab-3b^2=0\)
\(\Leftrightarrow10a^2+6ab-5ab-3b^2=0\)
\(\Leftrightarrow5a\left(2a-b\right)+3b\left(2a-b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(5a+3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\5a=-3b\end{matrix}\right.\)
Vì \(b>a>0\Rightarrow2a=b\)
Thay vào ta có :
\(B=\frac{b-b}{3a-b}+\frac{10a-a}{3a+2a}=0+\frac{9a}{5a}=\frac{9}{5}\)
\(3a^2+3b^2=10ab\Leftrightarrow\left(3a^2-9ab\right)+\left(3b^2-ab\right)=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
Do \(a>b>0\Rightarrow3a-b>0\Rightarrow a=3b\)
\(P=\frac{a-b}{a+b}=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)
\(2\left(a^2+b^2\right)=5ab\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\)
TH1: \(2a=b\Rightarrow P=\frac{3a-2a}{2a+2a}=\frac{a}{4a}=\frac{1}{4}\)
TH2: \(a=2b\Rightarrow P=\frac{6b-b}{4b+b}=\frac{5b}{5b}=1\)
Ta có: \(2\left(a^2+b^2\right)=5ab\Rightarrow2a^2+2b^2-5ab=0\) 0
\(\Rightarrow2a^2-ab-4ab+2b^2=0\) \(\Rightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)
\(\Rightarrow\left(2a-b\right)\left(a-2b\right)=0\) \(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Rightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)
TH1: 2b=a thay vào P ta được:
\(P=\frac{3.2b-b}{2.2b+b}=\frac{6b-b}{4b+b}=\frac{5b}{5b}=1\)
TH2: 2a=b \(\Rightarrow P=\frac{3a-2a}{2a+2a}=\frac{a}{4a}=\frac{1}{4}\)
Vậy \(\orbr{\begin{cases}P=1\\P=\frac{1}{4}\end{cases}}\)
bạn ơi, mình sửa lại nhá.
a>b>0 => a=2b (không có th b=2a)
=> P=1
Bài 1:
a^2-5ab-6b^2=0
=>a^2-6ab+ab-6b^2=0
=>a*(a-6b)+b(a-6b)=0
=>(a-6b)(a+b)=0
=>a=-b hoặc a=6b
TH1: a=-b
\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)
TH2: a=6b
\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)
\(3a^2+2b^2-7ab=0\)
\(\Leftrightarrow\left(3a^2-6ab\right)+\left(2b^2-ab\right)=0\)
\(\Leftrightarrow3a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3a-b=0\\a-2b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}b=3a\\a=2b\end{matrix}\right.\)
Thay \(b=3a\) vào P ta có :
\(P=\frac{2019a-2020.3a}{2020a+2021.3a}=\frac{-3951a}{8083a}=\frac{-3951}{8083}\)
Thay \(a=2b\) vào P ta có :
\(P=\frac{2019.2b-2020b}{2020.2b+2021b}=\frac{2018}{6061}\)
Vậy..