Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{c+a}\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b}\end{cases}}\)
\(\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Leftrightarrow a=b=c\)
Thay vào M được \(M=\frac{3a^2}{3a^2}=1\)
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(4=\left(1.a+1.b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)
\(\Rightarrow a^2+b^2\ge2\). Dấu "=" xảy ra khi a = b
Vậy A đạt giá trị nhỏ nhất bằng 2 tại a = b =1
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\Rightarrow a=b=c\)
\(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
1)Ta có:\(ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c},ab=c^2\Rightarrow\frac{c}{a}=\frac{b}{c}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{b}{c}=\frac{a+c+b}{b+a+c}=1\)(T/C...)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{b^{333}}{a^{111}\cdot c^{222}}=\frac{b^{333}}{b^{111}\cdot b^{222}}=\frac{b^{333}}{b^{333}}=1\)
\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc=ab^2+abc=abc+b^2c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(a+c\right).bc=\left(b+c\right).ac\Rightarrow abc=c^2a=abc+c^2b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=c\\a=b\end{cases}\Rightarrow a=b=c\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1}\)
Áp dụng bất đẳng thức côsi cho 2 số thực. Ta có:
\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)
\(\Leftrightarrow M\ge2\)
Dấu "=" xảy ra khi \(a=b.\)
Mà \(a+b=2\) nên \(a=b=1.\)
Vậy \(a=b=1\) thì M nhận GTNN là 2