∈∈ N va 2a+b chia het cho 7 CM 3a2+10ab-8b2 chia het cho 49

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Đặt 2a + b = 7k chia hết cho 7 => (2a + b)2 = 49k2 chia hết cho 49

(2a + b)2 = 4a2 + 4ab + b2 chia hết cho 49

4a2 + 4ab + b2 - (3a2 +10ab - 8b2) = a2 - 6ab +9b2 = (a - 3b)2

Ta có 2a + b chia hết cho 7 nên 3(2a + b) = 6a + 3b chia hết cho7

Ta có 6a + 3b + (a - 3b) = 7a chia hết cho 7 mà 6a + 3b chia hết cho 7 => a - 3b chia hết cho 7

a - 3b chia hết cho 7 => (a - 3b)2 chia hết cho 49

=> 4a2 + 4ab + b2 - (3a2 + 10ab - 8b2) chia hết cho 49

mà 4a2 + 4ab + b2 chia hết cho 49 => 3a2 + 10ab - 8b2 chia hết cho 49

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

31 tháng 10 2020

a) Đặt \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(\Rightarrow A=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\)

\(\Rightarrow A=\left(t+y^2\right)\left(t-y^2\right)+y^4=t^2-y^4+y^4\)

         \(=t^2=\left(x^2+5xy+5y^2\right)^2\)là số chính phương ( đpcm )

28 tháng 2 2019

Sai đề ko?

28 tháng 2 2019

what chia  x+1 ra 2 so du