Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2+a}{1+a}+\frac{1-2b}{1+2b}=\frac{\left(2+a\right)\left(1+2b\right)+\left(1-2b\right)\left(1+a\right)}{\left(1+a\right)\left(1+2b\right)}=\frac{2a+2b+3}{\left(1+a\right)\left(1+2b\right)}.\)
Ta có: \(\left(2+2a\right)\left(1+2b\right)\le\frac{\left(2+2a+1+2b\right)^2}{4}=\frac{\left(2a+2b+3\right)^2}{4}\)
\(\Rightarrow\left(1+a\right)\left(1+2b\right)\le\frac{\left(2a+2b+3\right)^2}{8}.\)
\(\Rightarrow\frac{2+a}{1+a}+\frac{1-2b}{1+2b}=\frac{2a+2b+3}{\left(1+a\right) \left(1+2b\right)}\ge\frac{2a+2b+3}{\frac{\left(2a+2b+3\right)^2}{8}}=\frac{8}{2a+2b+3}\ge\frac{8}{2.2+3}=\frac{8}{7}.\)
ta có \(\frac{2+a}{1+b}+\frac{1-2b}{1+2b}=\frac{1+a+1}{1+a}+\frac{2-\left(1+2b\right)}{1+2b}=\frac{1}{1+a}+\frac{2}{1+2b}\)
sử dụng bất đẳng thức Cauchy-Schwwarz ta có:
\(\frac{1}{1+a}+\frac{2}{1+2b}=\frac{1}{1+a}+\frac{1}{\frac{1}{2}+b}\ge\frac{4}{1+a+\frac{1}{2}+b}\ge\frac{4}{1+\frac{1}{2}+2}=\frac{8}{7}\)do a+b =<2
dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=2\\1+a=\frac{1}{2}+b\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{5}{4}\end{cases}}}\)
$\frac{2+a}{1+a}=1+\frac{1}{1+a}$
\(\frac{1-2b}{1+2b}=-1+\frac{2}{1+2b}\)$\frac{1-2b}{1+2b}=-1+\frac{2}{1+2b}$
$\frac{1}{1+a}+\frac{2}{2+2b}=\frac{2}{2+2a}+\frac{2}{2+2b}\ge \frac{8}{4+2\left(a+b\right)}=\frac{8}{7}$
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi
Đặt \(b=xa;c=ya\Rightarrow a^2+2x^2a^2\le3y^2a^2\Leftrightarrow1+2x^2\le3y^2\)
Ta cần chứng minh:\(\frac{1}{a}+\frac{2}{xa}\ge\frac{3}{ya}\Leftrightarrow1+\frac{2}{x}\ge\frac{3}{y}\)
Vậy ta viết được bài toán thành dạng đơn giản hơn:
Cho x, y > 0 thỏa mãn \(1+2x^2\le3y^2\). Chứng minh:\(1+\frac{2}{x}\ge\frac{3}{y}\)
Tối về em suy nghĩ tiếp ạ!
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)thì bài toán thành
\(x+y+z=2\) chứng minh rằng
\(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)
Trước hết ta chứng minh:
Ta có: \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge\frac{3x}{4}\)
\(\Leftrightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)
\(\Rightarrow VP\ge\left(x+y+z\right)-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
VT:2/(2+2a) + 2/(1+2b) >= 2.4/(2+2a+1+2b) >= 8/7