Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
Vì 0<a<b nên ab+ac<ab+bc
\(\Rightarrow\frac{ab+ac}{b\left(b+c\right)}>\frac{ab+bc}{b\left(b+c\right)}\)
hay \(\frac{a}{b}< \frac{a+c}{b+c}\)
Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)
Ta có: \(\frac{a-1}{a}=1-\frac{1}{a};\frac{b+1}{b}=1+\frac{1}{b}\)
+ \(a;b>0\Rightarrow\frac{1}{a};\frac{1}{b}>0\Rightarrow1-\frac{1}{a}< 1+\frac{1}{b}hay\frac{a-1}{a}< \frac{b+1}{b}\)
+ \(a;b< 0\Rightarrow\frac{1}{a};\frac{1}{b}< 0\Rightarrow1-\frac{1}{a}>1+\frac{1}{b}hay\frac{a-1}{a}>\frac{b+1}{b}\)
\(A=\frac{5}{n-1}+\frac{n-3}{n-1}=\frac{5+n-3}{n-1}=\frac{n-2}{n-1}\)
a) Để A là phân số thì \(n-1\ne0\)
=> \(n\ne1\)
b) ĐK: n khác 1
Để A là 1 số nguyên thì \(n-2⋮n-1\)
\(\Leftrightarrow1⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(1\right)\)
...
a) Để A là phân số thì n-1 \(\ne\)0 => n \(\ne\)1
b) \(\frac{5}{n-1}\)+ \(\frac{n-3}{n-1}\)= \(\frac{5+n-3}{n-1}\)= \(\frac{n+2}{n-1}\)= \(\frac{n-1+3}{n-1}\)= \(\frac{3}{n-1}\)
Để A là số nguyên thì 3 \(⋮\)n-1
=> n-1 \(\in\)Ư(3) = { 1; 3; -1; -3}
=> n \(\in\){ 2; 4; 0; -2}
Vậy...
Toán lớp 6 Phân sốToán chứng minh
Nguyễn Triệu Yến Nhi 07/05/2015 lúc 16:44
a)
A=(a3+a2)+(a2−1)(a3+a2)+(a2+a)+(a+1) =a2(a+1)+(a+1)(a+1)a2(a+1)+a(a+1)+(a+1) =(a+1)(a2+a−1)(a+1)(a2+a+1) =a2+a−1a2+a−1
b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )
=> a2 + a - 1 chia hết cho d
a2 + a +1 chia hết cho d
=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d
=> d = 1 hoặc d = 2
Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2
=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ
=> d không thể = 2
Vậy d = 1 => đpcm
a) TH1: Nếu \(b< 0\)\(\Rightarrow a+b< a\)
TH2: Nếu \(b\ge0\)\(\Rightarrow a+b\ge a\)
b) TH1: \(a=b\)\(\Rightarrow a-b=b-a=0\)\(\Rightarrow\left(a-b\right)\left(b-a\right)=0\)
TH2: \(a\ne b\)\(\Rightarrow a-b\)và \(b-a\)đối nhau \(\Rightarrow\left(a-b\right)\left(b-a\right)< 0\)
\(\Rightarrow\left(a-b\right)\left(b-a\right)\le0\)( đpcm )