Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Bạn ơi :) Đề đâu ạ ?
Bạn đứa đề bổ sung nhé :) Chứ rút gọn kiểu này thì chịu ạ :0
\(x+y=3\sqrt{xy}\)
\(\Leftrightarrow\)\(\frac{x}{y}+1=3\sqrt{\frac{x}{y}}\)
\(\Leftrightarrow\)\(\frac{x}{y}-3\sqrt{\frac{x}{y}}+\frac{9}{4}=\frac{5}{4}\)
\(\Leftrightarrow\)\(\left(\sqrt{\frac{x}{y}}-\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\)\(\frac{x}{y}=\frac{7+3\sqrt{5}}{2}\)
Theo bài có : \(\sqrt{ab}=\frac{a+b}{a-b}\) (1) nên suy ra : \(\frac{a+b}{a-b}\ge0\)
Mà a+b > 0 do a,b là số thực dương nên suy ra : a-b > 0 hay a > b
Có : \(\sqrt{ab}=\frac{a+b}{a-b}\)
\(\Leftrightarrow\)ab = \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}\)=\(\frac{\left(a-b\right)^2+4ab}{\left(a-b\right)^2}\)= \(1+\frac{4ab}{\left(a-b\right)^2}\)
Ta có : P = ab + \(\frac{a-b}{\sqrt{ab}}\)= \(1+\frac{4ab}{\left(a-b\right)^2}\) + \(\frac{a-b}{2\sqrt{ab}}\)+ \(\frac{a-b}{2\sqrt{ab}}\) \(\ge\)4\(\sqrt[4]{1.\frac{4ab}{\left(a-b\right)^2}.\frac{a-b}{2\sqrt{ab}}.\frac{a-b}{2\sqrt{ab}}}\)= 4\(\sqrt[4]{1}\)= 4 ( theo BĐT Cô -si)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{a-b}{2\sqrt{ab}}=1\\\frac{a-b}{2\sqrt{ab}}=\frac{4ab}{\left(a-b\right)^2}\\\frac{4ab}{\left(a-b\right)^2}=1\end{cases}}\) \(\Leftrightarrow a=b.\left(\sqrt{2}+1\right)^2\)
Thay a = b.\(\left(\sqrt{2}+1\right)^2\)vào (1) rồi tính ra ta được :\(\hept{\begin{cases}a=2+\sqrt{2}\\b=2-\sqrt{2}\end{cases}}\left(thỏamãn\right)\)
Vậy P min = 4 đạt được khi \(\hept{\begin{cases}a=2+\sqrt{2}\\b=2-\sqrt{2}\end{cases}}\)
Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy
⇒ x2 + y2 ≥ 2xy
⇔ \(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2
⇔ \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2
⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)
CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2
⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ \(6\) ( 2)
Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))
Đẳng thức xảy ra khi : x = y
Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )
Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )
Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )
Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)
Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)
Đẳng thức xảy ra khi a = b = 4