Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vào TKHĐ của mình xem hình ảnh cho tiện nhé !
đây là câu trả lời của mình nha ! Tránh bị phàn nàn là copy
người bị ghét :((: các bạn trước khi đăng bài nên vào mục câu hỏi tương tự để xem có câu hỏi nào giống mình không nhé.
Câu hỏi của Nguyễn Mai - Toán lớp 9 | Học trực tuyến
Bất đẳng thức phụ:
Với \(xy\le\) thì \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+xy}\) ( biến đổi tương đương )
Áp dụng:\(\frac{1}{1+a}+\frac{1}{1+b}+2017ab\)
\(\le\frac{2}{1+ab}+2017ab\)
Đặt \(x=ab\le1\)
Khi đó:\(LHS\le\frac{2}{1+x}+2017x\)
Đến đây biến đổi tương đương chắc là ra nhỉ
TL :
Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).
HT
Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái
\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?
Bt=4/2ab+3/(a^2+b^2)=1/2ab+3(1/2ab+1/a^2+b^2)
>=1/2ab+3.4/(a+b)^2(BĐT Cauchuy-Swartch)
>=2/4ab+12/(a+b)^2>=2(a+b)^2+12/(a+b)^2=14/(a+b)^2=1
Dấu= xảy ra khi a=b=1/2
Ap dông B§T C-S ta cã:
\(\frac{a}{a+\sqrt{2016a+bc}}=\frac{a}{a+\sqrt{\left(a+b+c\right)a+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\)
\(\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)
\(=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\). Tuong tù ta cx cã:
\(\frac{b}{b+\sqrt{2016b+ca}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2016c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Céng theo vÕ c¸c B§T trªn ta dc:
\(VT\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
P/s:may mk bi loi Unikey r` mk dg ban chua kip chinh lai bn gang doc
Lời giải:
Áp dụng BĐT AM-GM:
$3=a+b+ab\leq a+b+\frac{(a+b)^2}{4}$
$\Leftrightarrow (a+b-2)(a+b+6)\geq 0$
$\Rightarrow a+b\geq 2$
BĐT cần chứng minh tương đương với:
\(\frac{3a}{b+3}+\frac{3b}{a+3}+\frac{3ab}{a+b}\leq 3\)
\(\Leftrightarrow a-\frac{ab}{b+3}+b-\frac{ab}{a+3}+\frac{3ab}{a+b}\leq a+b+ab\)
\(\Leftrightarrow ab+\frac{ab}{a+3}+\frac{ab}{b+3}\geq \frac{3ab}{a+b}\)
\(\Leftrightarrow 1+\frac{1}{a+3}+\frac{1}{b+3}\geq \frac{3}{a+b}(*)\)
Áp dụng BĐT Cauchy-Schwarz:
\(1+\frac{1}{a+3}+\frac{1}{b+3}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{a+3}+\frac{1}{b+3}\geq \frac{36}{22+a+b}\)
\(\geq \frac{36}{11(a+b)+(a+b)}=\frac{3}{a+b}\)
BĐT $(*)$ đc chứng minh. Bài toán hoàn tất
Dấu "=" xảy r akhi $a=b=1$
Từ \(a+b+ab=3\Rightarrow a+b=3-ab\ge3-\frac{\left(a+b\right)^2}{4}\)
\(\Rightarrow\left(a+b+6\right)\left(a+b-2\right)\ge0\Rightarrow a+b\ge2\)
Biến đổi bài toán như sau:
\(P=\frac{3a}{b+1}+\frac{3b}{a+1}+\frac{ab}{a+b}-a^2-b^2\le\frac{3}{2}\)
Tức là chứng minh \(\frac{3}{2}\) là GTLN của \(P\)
\(P=\frac{3\left(a^2+b^2\right)+3\left(a+b\right)}{ab+a+b+1}+\frac{3-a-b}{a+b}-\left(a+b\right)^2++2\left(3-a-b\right)\)
\(=\frac{3}{4}\left[3\left(a+b\right)^2-6\left(3-a-b\right)+3\left(a+b\right)\right]\)
\(+\frac{3}{a+b}-1-\left(a+b\right)^2+6-2\left(a+b\right)\)
Khảo sat đồ thì trên \(a+b\ge2\) tìm tìm được \(P_{Max}=\frac{3}{2}\)
P/s:giờ mk đi ngủ, mệt r` chỗ nào khó hiểu mai hỏi :D
ta có: \(VT=\frac{a\left(a+b+ab\right)}{b+1}+\frac{b\left(a+b+ab\right)}{a+1}+\frac{ab}{a+b}\)
\(=a^2+b^2+\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\)
cần cm \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}\)
theo giả thiết \(4=\left(a+1\right)\left(b+1\right)\le\frac{1}{4}\left(a+b+2\right)^2\)
\(\Leftrightarrow a+b\ge2\)
ta có: \(\frac{ab}{a+b}=\frac{ab+a+b}{a+b}-1=\frac{3}{a+b}\le\frac{3}{2}-1\)(*)
\(\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{1}{4}\left(b+ab\right)+\frac{1}{4}\left(a+ab\right)=\frac{1}{4}\left(3+ab\right)\)(**)
giờ cần tìm max ab.để ý rằng \(ab=ab+a+b-\left(a+b\right)=3-\left(a+b\right)\le3-2=1\)
khi đó \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}-1+\frac{1}{4}\left(3+1\right)=\frac{3}{2}\)(đpcm)
dấu = xảy ra khi a=b=1