\(a^3+b^3\). CMR \(a^2+b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(b\ge a\left(gt\right)\) \(\Leftrightarrow\frac{b}{c}\ge\frac{a}{c}\left(\text{ c dương}\right)\Leftrightarrow\frac{c}{b}\ge\frac{c}{a}\) (1)

            \(c\ge b\left(gt\right)\) \(\Leftrightarrow\frac{c}{a}\ge\frac{b}{a}\left(a\text{ }dương\right)\) (2)

            \(c\ge a\left(gt\right)\) \(\Leftrightarrow\frac{c}{b}\ge\frac{a}{b}\left(b\text{ }\text{​ dương}\right)\Leftrightarrow\frac{b}{c}\ge\frac{b}{a}\) (3)

Từ (1) , (2) và (3) ta có : \(\frac{c}{a}+\frac{b}{c}\ge\frac{b}{a}+\frac{a}{b}\)

14 tháng 11 2017

Áp dụng bất đẳng thức bu nhi a ta có

\(\left(a+2b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)=3.\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

=> \(a+2b\le3c\)

Mà \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)

=> \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\left(ĐPCM\right)\)

24 tháng 11 2019

bạn tl rất hay

cảm ơn bn

18 tháng 11 2019

\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}\ge1\)the problem -AoPS mình làm bên này rồi nha! (Câu trả lời của SBM)  

4 tháng 8 2017

1/ Chứng minh nó chia hết cho 3:

Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.

\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.

\(\Rightarrow xy⋮3\)

Chứng minh chia hết cho 4.

Nếu cả x, y đều chẵn thì \(xy⋮4\)

Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ

\(\Rightarrow x=2k+1;y=2m;z=2n+1\)

\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m⋮2\)

\(\Rightarrow y⋮4\)

\(\Rightarrow xy⋮4\)

Với x, y đều lẻ nên z chẵn

\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)

\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này

Vậy \(xy⋮4\)

Từ chứng minh trên 

\(\Rightarrow xy⋮12\)

4 tháng 8 2017

2/ \(a+b=c+d\)

\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)

\(\Leftrightarrow2ab=2cd\)

\(\Leftrightarrow-2ab=-2cd\)

\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)

Kết hợp với \(a+b=c+d\)

\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)

\(\RightarrowĐPCM\)

TL: 

Đặt a-b=x ; a+b+ab+1=y thì ta có pt ban đầu trở thành :

x(x2+3y)=y+25

.............(rồi bạn làm tiếp)

25 tháng 5 2019

tới đó rồi làm như thế nào

25 tháng 8 2017

Với mọi a , b , c \(\in\)R ta luôn có :

\(a^2\)+   \(b^2\)+   \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)

Ta cần chứng minh ( 1 ) là bất đẳng thức đúng

\(\Leftrightarrow\)\(a^2\)+   \(b^2\)+   \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0

\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )

Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng

Nên bất đẳng thức ( 1 ) được chứng minh

Xảy ra khi và chỉ khi a + b = c

Mà   \(a^2\)+   \(b^2\)+   \(c^2\)=   \(\frac{5}{3}\)( gt )

Mà   \(\frac{5}{3}\)=   \(1\frac{2}{3}\)< 2  ( 3 )

Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :

2bc + 2ca - 2ab < hoặc =    \(a^2\)+   \(b^2\)+   \(c^2\)< 2

\(\Rightarrow\)2bc + 2ca - 2ab < 2

Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc

\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)

\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy với a ; b ; c là các số dương thỏa mãn điều kiện :   \(a^2\)+   \(b^2\)+   \(c^2\)=   \(\frac{5}{3}\)thì ta luôn chứng minh được :

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

25 tháng 8 2017

đm làm mỏi tay :v thấy đúng thì ..................
 

24 tháng 4 2017

Do a,b đều dương nên a^3 + b^3 dương => a - b dương 

Nhân cả hai vế của bất đẳng thức cần chứng minh với a - b ta được : 

    \(a^2+b^2+ab<1\) 

<=> \(\left(a-b\right)\left(a^2+b^2+ab\right) 

<=> \(a^3-b^3=a^3+b^3\) 

do b dương nên b^3 > 0 => bất đẳng thức cuối cùng đúng

Vậy bất đẳng thức đã cho là đúng (đpcm)

24 tháng 4 2017

bổ sung : do a - b dương nên khi nhân a - b vào cả hai vế thì BĐT không đổi chiều.

8 tháng 11 2017

Có : (a-b)^2>=0

<=>a^2+b^2>=2ab       (2)

<=>a^2+b^2+2ab>=4ab

<=>(a+b)^2>=4ab (1) hay 4ab<=(a+b)^2    (3)

Với a,b > 0 thì chia hai vế (1) cho ab.(a+b) ta được : a+b/ab >= 4/a+b <=> 1/a + 1/b >= 4/a+b     (4)

Áp dụng bđt (2) ; (3) và (4)  thì VT = (4/a^2+b^2 + 1/2ab) + (4ab+1/4ab)+1/4ab

>= 4/(a^2+b^2+2ab) + 2\(\sqrt{\frac{4ab.1}{4ab}}\)\(\frac{1}{\left(a+b\right)^2}\)

= 4/(a+b)^2 + 2 + 1/(a+b)^2 >= 4/1 + 2 + 1/1 = 7 => ĐPCM 

Dấu "=" xảy ra <=> a=b ; a+b=1 <=> a=b=1/2