\(a^2+b^2=6\) CM rằng \(\sqrt{3\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Ta có: \(\sqrt{3\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)

<=> \(3\left(a^2+6\right)\ge2\left(a+b\right)^2\)

<=> \(3\left(a^2+b^2+a^2\right)\ge2a^2+2b^2+4ab\)

<=> \(6a^2+3b^2\ge2a^2+2b^2+4ab\)

<=> \(4a^2-4ab+b^2\ge0\)

<=> \(\left(2a-b\right)^2\ge0\) ( Luôn đúng) => đpcm

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}2a=b\\a^2+b^2=6\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}a=\sqrt{\dfrac{6}{5}}=\dfrac{\sqrt{30}}{5}\\b=\dfrac{2\sqrt{30}}{5}\end{matrix}\right.\)

24 tháng 6 2017

đề bảo cm đâu phải là tìm a ; b đâu mà tìm a ; b

13 tháng 9 2016

Bình phương 2 vế ta được 

3a2 + 18 - 2a2 - 4ab - 2b2 \(\ge\)0

<=> a- 2b2 - 4ab + 3( a2 + b2\(\ge0\)

<=> 4a2 - 4ab + b2 \(\ge0\)

<=> (2a - b)2 \(\ge0\)(đúng)

AH
Akai Haruma
Giáo viên
31 tháng 3 2020

Lời giải:

Từ ĐKĐB kết hợp BĐT Bunhiacopxky:
\(3(a^2+6)=3(a^2+a^2+b^2)=(1+2)(2a^2+b^2)\geq (\sqrt{2}a+\sqrt{2}b)^2\)

\(\Rightarrow \sqrt{3(a^2+6)}\geq \sqrt{2}(a+b)\) (đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} a,b>0\\ a^2+b^2=6\\ \frac{1}{\sqrt{2}a}=\frac{\sqrt{2}}{b}\end{matrix}\right.\) hay $a=\sqrt{\frac{6}{5}}; b=2\sqrt{\frac{6}{5}}$

30 tháng 3 2020

ta có: \(\sqrt{3\left(a^2+b^2\right)}\ge\left(a+b\right)^2\sqrt{2}\)

\(\Leftrightarrow3\left(2a^2+b^2\right)\ge2\left(a+b\right)^2\)(vì a2+b2=6)

\(\Leftrightarrow6a^2+3b^2\ge2a^2+4ab+2b^2\)

\(\Leftrightarrow4a^2-4ab+b^2\ge0\\ \Leftrightarrow\left(2a-b\right)^2\ge0\)

(luôn đúng với mọi a;bdương)

=> đpcm

4 tháng 3 2020

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

6 tháng 4 2020

Đặt gif.latex?%5Csqrt%7Ba%7D%3Dx%3B%5Csqrt%7Bb%7D%3Dy. Do đó gif.latex?x&plus;y%3D1. Cần chứng minh:

gif.latex?3%28x%5E2&plus;y%5E2%29%5E2%20-%28x%5E2&plus;y%5E2%29&plus;4x%5E2%20y%5E2%20%5Cgeqq%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B%28x%5E2&plus;3y%5E2%29%283x%5E2&plus;y%5E2%29%7D

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq  \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2}  $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right)  \left( 256\, \left( 1/4-xy \right) ^{3}+64\,  \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.

12 tháng 3 2017

Ta có:

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)

Suy ra  \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:

\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)

Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy:   \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)

\(\Rightarrow\)  \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\)  (do  \(a,b,c>0\)  )

nên   \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(\Rightarrow\) \(đpcm\)

Bài 1:Giải các phương trình sau:a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)Bài 2:Cho a,b,c thỏa mãn a+b+c=1Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)Bài 3:Giải hệ phương trình:\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)Bài 4:Tìm các cặp số...
Đọc tiếp

Bài 1:Giải các phương trình sau:

a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)

b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)

d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)

e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)

Bài 2:Cho a,b,c thỏa mãn a+b+c=1

Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)

Bài 3:Giải hệ phương trình:

\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)

Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:

\(x^2+2y^2+2xy-5x-5y=-6\)

Để (x+y) nguyên

Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện

\(x+y+z+xy+yz+xz=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:

\(a\ne0\)\(4a+2b+c+d=0\)

Chứng minh \(b^2\ge4ac+4ad\)

Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt

 

2
2 tháng 4 2019

 Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)

        \(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)

 Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^

4 tháng 4 2019

Có bạn nào biết giải câu f ko giải hộ mình với