Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách khác:
Ta chứng minh BĐT mạnh hơn sau đây: \(4\left(x+y+z\right)^3\ge27\left(x^2y+y^2z+z^2x+xyz\right)\) (sorry em quen gõ x, y, z rồi nha!)
Do a, b, c có vai trò hoán vị vòng quanh, không mất tính tổng quát, giả sử:
Hướng 1:
\(x=mid\left\{x,y,z\right\}\)
\(VT-VP=\left(4y+4z+x\right)\left(y+z-2x\right)^2-27y\left(x-y\right)\left(x-z\right)\ge0\)
Hướng 2:
\(y=\min\left\{\,x,\,y,\,z\right\}\)
\(VT-VP=\frac{27y(y-z)^2 + (4x+16z -11y)(y+z-2x)^2}{4} \geq 0\)
P/s: Đây là câu 2 trong chuyên mục của em: Câu hỏi của tth - Toán lớp 9, đã có đáp án.
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{1}{3};\frac{2}{3}\right)\)
Bài 1:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)[a(b+c)+b(c+a)+c(a+b)]\geq (a+b+c)^2\)
\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)$(*)$
Áp dụng BĐT AM-GM dễ thấy: $a^2+b^2+c^2\geq ab+bc+ac$
$\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}(**)$
Từ $(*); (**)\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2.\frac{(a+b+c)^2}{3}}=\frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT AM-GM:
\(\frac{a^3}{b(2c+a)}+\frac{b}{3}+\frac{2c+a}{9}\geq 3\sqrt[3]{\frac{a^3}{b(2c+a)}.\frac{b}{3}.\frac{2c+a}{9}}=a\)
\(\frac{b^3}{c(2a+b)}+\frac{c}{3}+\frac{2a+b}{9}\geq b\)
\(\frac{c^3}{a(2b+c)}+\frac{a}{3}+\frac{2b+c}{9}\ge c\)
Cộng theo vế và thu gọn ta có:
\(\frac{a^3}{b(2c+a)}+\frac{b^3}{c(2a+b)}+\frac{c^3}{a(2b+c)}\geq \frac{a+b+c}{3}=\frac{3}{3}=1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
1: \(x\in\left(1;5\right)\cup\left(-\infty;-2\right)\)
2: x>1
4: \(x\in\left(-2;+\infty\right)\)
\(\left\{{}\begin{matrix}a^3-\left(a-1\right)^2=6\\\left(b+1\right)^3-b^2=6\end{matrix}\right.\) \(\Rightarrow a^3-\left(b+1\right)^3-\left[\left(a-1\right)^2-b^2\right]=0\)
Từ đoạn này trở đi chắc bạn đặt nhân tử chung được
Đặt \(R\left(x\right)=P\left(x\right)-\left(x^2+2\right)\)
\(\Rightarrow R\left(1\right)=Q\left(2\right)=Q\left(3\right)=0\)
\(\Rightarrow R\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+x^2+2\)
Thay lần lượt \(x=4;x=-1\) vào \(P\left(x\right)\) và cộng lại
giải hệ phương trình\(\left\{{}\begin{matrix}-8b-2c+2bc+4=0\\b^2-2b+2=c^2-8c+20\end{matrix}\right.\)
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1