Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 số thực dương và \(a+2b< 0\) ạ?
Có gì đó rất ảo diệu ở đây :(
đặt \(A=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
\(2A=2a\sqrt{b^3+1}+2b\sqrt{c^3+1}+2c\sqrt{a^3+1}\)
\(2A=2a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2b\sqrt{\left(c+1\right)\left(c^2-c+1\right)}+2c\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\)
\(\le2a.\frac{b+1+b^2-b+1}{2}+2b.\frac{c+1+c^2-c+1}{2}+2c.\frac{a+1+a^2-a+1}{2}\)
\(=a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)=ab^2+bc^2+ca^2+2\left(a+b+c\right)=ab^2+bc^2+ca^2+6\)
Không mất tính tổng quát, giả sử \(a\le b\le c\), ta có :
\(a\left(c-b\right)\left(b-a\right)\ge0\Leftrightarrow abc+a^2b\ge ab^2+a^2c\)
\(\Leftrightarrow a^2b+a^2c+bc^2\le abc+a^2b+bc^2\le2abc+a^2b+bc^2=b\left(a+c\right)^2\)
Mặt khác, theo BĐT Cô-si cho 3 số dương :
\(b\left(a+c\right)^2=4b.\frac{a+c}{2}.\frac{a+c}{2}\le\frac{4}{27}\left(b+\frac{a+c}{2}+\frac{a+c}{2}\right)^3=\frac{4}{27}.\left(a+b+c\right)^3=4\)
\(\Rightarrow2A\le10\Rightarrow A\le5\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a\le b\le c;a+b+c=3\\abc=2abc\\2b=a+c\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}}\)
cho mình sửa lại là cái đoạn giả sử \(a\le b\le c\)
mình sẽ giả sử \(\orbr{\begin{cases}a\ge c\ge b\\b\ge c\ge a\end{cases}}\) \(\Rightarrow b\left(a-c\right)\left(c-b\right)\ge0\)( cả 2 Th )
rồi giải ra tương tự như dưới ấy là được
Áp dụng BĐT Cô-si,ta có :
\(a\sqrt{3a\left(a+2b\right)}\le a.\frac{3a+a+2b}{2}=2a^2+ab\)
Tương tự : \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\)
Cộng vế theo vế, ta được :
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2\left(a^2+b^2\right)+2ab=4+2ab\le4+a^2+b^2\le6\)
Dấu "=" xảy ra khi a = b = 1
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
Đặt \(K=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
\(\Rightarrow2K=2a\sqrt{b^3+1}+2b\sqrt{c^3+1}+2c\sqrt{a^3+1}=\)\(2a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2b\sqrt{\left(c+1\right)\left(c^2-c+1\right)}\)\(+2c\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\)\(\le a\left[\left(b+1\right)+\left(b^2-b+1\right)\right]+b\left[\left(c+1\right)+\left(c^2-c+1\right)\right]\)\(+c\left[\left(a+1\right)+\left(a^2-a+1\right)\right]\)(Theo BĐT AM - GM)
\(=a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)\)\(=ab^2+bc^2+ca^2+6\)
Đặt \(M=ab^2+bc^2+ca^2\)
Không mất tính tổng quát, giả sử \(a\ge c\ge b\)thì ta có \(b\left(a-c\right)\left(c-b\right)\ge0\Leftrightarrow abc+b^2c\ge ab^2+bc^2\)
\(\Leftrightarrow ab^2+bc^2+ca^2\le abc+b^2c+ca^2\)
hay \(M\le abc+b^2c+ca^2\le2abc+b^2c+ca^2=c\left(a+b\right)^2\)\(=4c.\frac{a+b}{2}.\frac{a+b}{2}\le\frac{4}{27}\left(c+\frac{a+b}{2}+\frac{a+b}{2}\right)^3\)\(=\frac{4\left(a+b+c\right)^3}{27}=4\)
\(\Rightarrow2K\le10\Rightarrow K\le10\)
Vậy \(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)
Đẳng thức xảy ra khi \(\left(a,b,c\right)=\left(2,0,1\right)\)
Kiệt cop sai đáp án rồi kìa :))
Đoạn cuối không giả sử \(a\ge c\ge b\) được đâu nhá
Mà phải giả sử b là số nằm giữa a và c
Khi đó:
\(\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2+ac\le ab+bc\)
\(\Leftrightarrow ab^2+a^2c\le a^2b+abc\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2=b\left(a^2+ac+c^2\right)\)
\(\le b\left(a^2+2ac+c^2\right)=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta chứng minh \(b\left(3-b\right)^2\le4\Leftrightarrow\left(b-1\right)^2\left(b-4\right)\le0\) *đúng *
Vậy ............................
bunyakovsky:
\(\left(\sqrt{a+3}+\sqrt{2}.\sqrt{2b+6}\right)^2\le\left(1+2\right)\left(a+2b+9\right)< 3.12=36\)
\(\Rightarrow0< \sqrt{a+3}+2\sqrt{b+3}< 6\)