K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

nhầm tí ( 4a + 2b ) chia het cho 3

9 tháng 8 2017

Ta có: ( 2a + 7b ) + ( 4a + 2b ) = 6a + 9b

 => ( 6a + 9b ) - ( 2a +7b ) = 4a +2b 

Mà 6a + 9b và 2a + 7b chia hết cho 3 nên 4a + 2b chia hết cho 3

25 tháng 11 2017

Ta có : ( 2a + 7b ) + ( 4a + 2b ) = 6a + 9b

=> ( 6a + 9b ) - ( 2a + 7b ) = 4a + 2b

Mà 6a + 9b và 2a + 7b chia hết cho 3 nên 4a + 2b chia hết cho 3 

25 tháng 11 2017

thank

20 tháng 8 2017

Giả sử \(\left(4a+2b\right)⋮3\)

\(\Rightarrow\left(4a+2b\right)+\left(2a+7b\right)⋮3\)

\(\Rightarrow\left(6a+9b\right)⋮3\) (đúng)

=> Giả sử đúng

Vậy \(\left(4a+2b\right)⋮3\)

Giả sử (4a+2b)⋮3

⇒(4a+2b)+(2a+7b)⋮3

⇒(6a+9b)⋮3 (đúng)

=> Giả sử đúng

Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng

22 tháng 1 2019

Em phải học hằng đảng thức lớp 8

Anh giải cho :

ta có: 

<=> \(a^2-2ab+b+ab⋮9\)

<=> \(\left(a-b\right)^2+ab⋮9\)

=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)

Xét \(\left(a-b\right)^2⋮9\)

<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)

<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)

Xét \(ab⋮9\)

<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)

Từ (1) và (2) => \(a⋮3\)

                           \(b⋮3\)

26 tháng 11 2021

Answer:

Ta có:

\(a^2-ab+b^2⋮9⋮3\)

\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2⋮3\)

\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)

\(\Rightarrow\left(a+b\right)^2⋮9\)

Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)

\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)

Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3

Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)

30 tháng 3 2021

Giả sử (4a+2b)⋮3(4a+2b)⋮3

⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3

⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)

=> Giả sử đúng

Vậy (4a+2b)⋮3

14 tháng 3 2020

Ta có : \(6a-1⋮2a+1\)

\(\Rightarrow6a+3-4⋮2a+1\)

\(\Rightarrow3\left(2a+1\right)-4⋮2a+1\)

Mà 3(2a+1)\(⋮\)2a+1

\(\Rightarrow4⋮2a+1\)

\(\Rightarrow2a+1\in\left\{\pm1;\pm2;\pm4\right\}\)

Vì 2a+1 là số lẻ nên 2a+1 bằng -1 hoặc 1

\(\Rightarrow a\in\left\{0;-1\right\}\)