\(\frac{a^2+b^2}{ab}\)là một số nguyên. Tính giá...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

Đặt biểu thức trên là A

-Trường hợp a chia hết b:

Ta có: A nguyên nên a^2 + b^2 chia hết ab

Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a

=> a=b

=> (a^2+b^2)/ab= 2a^2/a^2=2

-Trường hợp a không chia hết b, hoặc b không chia hết a:

A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2

Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab

Mà a,b nguyên nên: \(a< b\left(a+1\right)\) <=> \(a-b< ab\)

Mà a-b chia hết ab => \(a-b\ge ab\)

=> Phương trình vô nghiệm ở trường hợp này.

Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*

16 tháng 11 2016

Đặt biểu thức trên là A

-Trường hợp a chia hết b:

Ta có: A nguyên nên a^2 + b^2 chia hết ab

Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a

=> a=b

=> (a^2+b^2)/ab= 2a^2/a^2=2

-Trường hợp a không chia hết b, hoặc b không chia hết a:

A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2

Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab

Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab

Mà a-b chia hết ab => a−b≥ab

=> Phương trình vô nghiệm ở trường hợp này.

Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*

31 tháng 7 2018

tự hỏi tự trả lời

19 tháng 11 2016

Đặt biểu thức trên là A

-Trường hợp a chia hết b:

Ta có: A nguyên nên a^2 + b^2 chia hết ab

Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a

=> a=b

=> (a^2+b^2)/ab= 2a^2/a^2=2

-Trường hợp a không chia hết b, hoặc b không chia hết a:

A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2

Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab

Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab

Mà a-b chia hết ab => a−b≥ab

=> Phương trình vô nghiệm ở trường hợp này.

Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*

21 tháng 8 2019

Dạng này nhìn mệt vãi:(

Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)

Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:

Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:

\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v

Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!

20 tháng 8 2023

hay bạn ơi

 

2 tháng 1 2018

a,  x^2 - 2xy + 2y^2 - 2x + 6y + 5 =0

<=> x^2  -  2x(y+1)  + y^2 + 2y + 1 + y^2 + 4y + 4 = 0

<=> x^2  - 2x(y+1) + (y+1)^2   +  (y+2)^2   =0

<=> (x-y-1)^2   +    (y+2)^2   =0

<=>   x-y-1  = 0 và y+2 =0

<=> y = -2     =>  x=  -1

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2abc\left(a+b+c\right)}{a^2b^2c^2}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)