
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Nếu \(1\)trong \(3\)số có giá trị bằng \(0\) , giả sử là \(c=0\):
\(P=\left|a\right|+\left|b\right|+\left|c\right|=2\left|a\right|\)là số chẵn.
Nếu không có số nào bằng \(0\):
Hai trong ba số \(a,b,c\)sẽ cùng dấu, giả sử đó là \(a,b\).
\(a+b+c=0\Leftrightarrow a+b=-c\)
\(P=\left|a\right|+\left|b\right|+\left|a+b\right|=\left|a\right|+\left|b\right|+\left|a\right|+\left|b\right|=2\left(\left|a\right|+\left|b\right|\right)\)là số chẵn.
Ta có đpcm.


Ta có: \(ab=c\left(a-b\right)\)
<=> \(c^2=ac-bc-ab+c^2\)
<=> \(c^2=a\left(c-b\right)+c\left(c-b\right)\)
<=> \(c^2=\left(c-b\right)\left(a+c\right)\)
Đặt: ( c - b ; a + c ) = d
=> \(c^2⋮d^2\)=> \(c⋮d\)(1)
và \(\hept{\begin{cases}c-b⋮d\\a+c⋮d\end{cases}}\)(2)
Từ (1); (2) => \(b;a⋮d\)(3)
Từ (1); (3) và (a; b ; c ) =1
=> d = 1 hay c - b; a + c nguyên tố cùng nhau
Mà \(\left(c-b\right)\left(a+c\right)=c^2\)là số chính phương
=> c - b ; a + c là 2 số chính phương
Khi đó tồn tại số nguyên dương u, v sao cho: \(c-b=u^2;a+c=v^2\)khi đó: \(c^2=u^2.v^2\)<=> c = uv ( vì c, u,, v nguyên dương )
Ta có: \(a-b=\left(a+c\right)+\left(c-b\right)-2c\)
\(=u^2+v^2-2uv=\left(u-v\right)^2\) là số chính phương.
Lời giải:
Xét hai biểu thức \(\mid a + b \mid\) và \(\mid a - b \mid\). Ta sẽ chứng minh tổng của chúng là số chẵn trong mọi trường hợp.
Ta xét hai trường hợp:
Trường hợp 1: \(a\) và \(b\) cùng chẵn hoặc cùng lẻ.
Khi đó, \(a + b\) và \(a - b\) đều là số chẵn.
Giá trị tuyệt đối của số chẵn vẫn là số chẵn.
Suy ra \(\mid a + b \mid\) và \(\mid a - b \mid\) đều chẵn.
Tổng hai số chẵn là số chẵn.
Vậy \(\mid a + b \mid + \mid a - b \mid\) là số chẵn.
Trường hợp 2: Một trong hai số là chẵn, số còn lại là lẻ.
Khi đó, \(a + b\) và \(a - b\) đều là số lẻ.
Giá trị tuyệt đối của số lẻ vẫn là số lẻ.
Tổng hai số lẻ là số chẵn.
Vậy \(\mid a + b \mid + \mid a - b \mid\) là số chẵn.
Kết luận: Dù \(a , b\) là số nguyên bất kỳ, thì \(\mid a + b \mid + \mid a - b \mid\) luôn là số chẵn.
- Trường hợp 1: \(a \geq 0\) và \(b \geq 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = a + b + \mid a - b \mid\)
- Nếu \(a \geq b\), thì \(\mid a + b \mid + \mid a - b \mid = a + b + a - b = 2 a\). Vì \(a\) là số nguyên, \(2 a\) là số chẵn.
- Nếu \(a < b\), thì \(\mid a + b \mid + \mid a - b \mid = a + b + b - a = 2 b\). Vì \(b\) là số nguyên, \(2 b\) là số chẵn.
- Trường hợp 2: \(a < 0\) và \(b < 0\). Đặt \(a^{'} = - a\) và \(b^{'} = - b\), ta có \(a^{'} > 0\) và \(b^{'} > 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = \mid - a^{'} - b^{'} \mid + \mid - a^{'} + b^{'} \mid = \mid a^{'} + b^{'} \mid + \mid b^{'} - a^{'} \mid\)
- Nếu \(b^{'} \geq a^{'}\), thì \(\mid a^{'} + b^{'} \mid + \mid b^{'} - a^{'} \mid = a^{'} + b^{'} + b^{'} - a^{'} = 2 b^{'}\). Vì \(b^{'}\) là số nguyên dương, \(2 b^{'}\) là số chẵn.
- Nếu \(b^{'} < a^{'}\), thì \(\mid a^{'} + b^{'} \mid + \mid b^{'} - a^{'} \mid = a^{'} + b^{'} + a^{'} - b^{'} = 2 a^{'}\). Vì \(a^{'}\) là số nguyên dương, \(2 a^{'}\) là số chẵn.
- Trường hợp 3: \(a \geq 0\) và \(b < 0\). Đặt \(b^{'} = - b\), ta có \(b^{'} > 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = \mid a - b^{'} \mid + \mid a + b^{'} \mid\)
- Nếu \(a \geq b^{'}\), thì \(\mid a - b^{'} \mid + \mid a + b^{'} \mid = a - b^{'} + a + b^{'} = 2 a\). Vì \(a\) là số nguyên, \(2 a\) là số chẵn.
- Nếu \(a < b^{'}\), thì \(\mid a - b^{'} \mid + \mid a + b^{'} \mid = b^{'} - a + a + b^{'} = 2 b^{'}\). Vì \(b^{'}\) là số nguyên dương, \(2 b^{'}\) là số chẵn.
- Trường hợp 4: \(a < 0\) và \(b \geq 0\). Đặt \(a^{'} = - a\), ta có \(a^{'} > 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = \mid - a^{'} + b \mid + \mid - a^{'} - b \mid = \mid b - a^{'} \mid + \mid a^{'} + b \mid\)
- Nếu \(b \geq a^{'}\), thì \(\mid b - a^{'} \mid + \mid a^{'} + b \mid = b - a^{'} + a^{'} + b = 2 b\). Vì \(b\) là số nguyên, \(2 b\) là số chẵn.
- Nếu \(b < a^{'}\), thì \(\mid b - a^{'} \mid + \mid a^{'} + b \mid = a^{'} - b + a^{'} + b = 2 a^{'}\). Vì \(a^{'}\) là số nguyên dương, \(2 a^{'}\) là số chẵn.
Vậy trong mọi trường hợp, |a+b| + |a-b| luôn là số chẵn.