Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P\left(1\right)=a+b+c\)
\(P\left(4\right)=16a+4b+c\)
\(P\left(9\right)=81a+9b+c\)
Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ
=> \(5a+b\)là số hữu tỉ (1)
Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ
=> \(10a+b\)là số hữu tỉ (2)
Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ
=> a là số hữu tỉ
Từ (1)=> b là số hữu tỉ
=> c là số hữu tỉ
Ta có: \(a^2+b^2+c^2=m^2+n^2+p^2\)
\(\Rightarrow a^2+b^2+c^2+m^2+n^2+p^2=2\left(m^2+n^2+p^2\right)\)
Vì \(2\left(m^2+n^2+p^2\right)⋮2\)\(\Rightarrow a^2+b^2+c^2+m^2+n^2+p^2⋮2\)(1)
Vì tích hai số tự nhiên liên tiếp chia hết cho 2 nên:
\(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+m\left(m-1\right)\)
\(+n\left(n-1\right)+p\left(p-1\right)\)là số chẵn
\(\Rightarrow\left(a^2+b^2+c^2+m^2+n^2+p^2\right)-\left(a+b+c+m+n+p\right)⋮2\)(2)
Từ (1) và (2) suy ra a + b + c + m + n + p chia hết cho 2
Mà a + b + c + m + n + p > 2 ( do a,b,c,m,n,p dương) nên a + b + c + m + n + p là hợp số (đpcm)
\(2.\left(a^2+b^2\right)-1⋮a+b+1\left(a+b+1\in Z\right)\)
\(\Leftrightarrow2a^2+2b^2-1⋮a+b+1\Leftrightarrow\left(2b\right)^2-1^2⋮a+b+1\)
\(\Leftrightarrow\left(2b-1\right).\left(2b+1\right)⋮2b+1\left(\text{luôn đúng}\right)\)
p/s: ko bt cách c/m này đc ko nx...
Lời giải:
$x$ là số hữu tỉ khác $0$. Đặt $x=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$.
Giả sử $x+y$ là số hữu tỉ. Đặt $x+y=\frac{c}{d}$ với $c,d\in\mathbb{Z}, d\neq 0$
$\Rightarrow y=\frac{c}{d}-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ là số hữu tỉ (do $bc-ad, bd\in\mathbb{Z}, bd\neq 0$)
Điều này vô lý do $y$ là số vô tỉ.
$\Rightarrow$ điều giả sử là sai. Tức là $x+y$ vô tỉ.
Hoàn toàn tương tự, $x-y$ cũng là số vô tỉ.
-------------------------------
Chứng minh $xy$ vô tỉ.
Giả sử $xy$ hữu tỉ. Đặt $xy=\frac{c}{d}$ với $c,d$ nguyên và $d\neq 0$
$\Rightarrow y=\frac{c}{d}:x=\frac{c}{d}:\frac{a}{b}=\frac{bc}{ad}\in\mathbb{Q}$
Điều này vô lý do $y\not\in Q$
$\Rightarrow$ điều giả sử là sai $\Rightarrow xy$ vô tỉ.
-------------------------------
CM $\frac{x}{y}$ vô tỉ.
Giả sử $\frac{x}{y}$ hữu tỉ. Đặt $\frac{x}{y}=\frac{c}{d}$ với $c,d$ nguyên, $d\neq 0$
$\Rightarrow y=x:\frac{c}{d}=\frac{a}{b}: \frac{c}{d}=\frac{ad}{bc}\in\mathbb{Q}$
Điều này vô lý do $y\not\in Q$
$\Rightarrow$ điều giả sử là sai. Tức là $\frac{x}{y}$ vô tỉ.
\(f\left(x\right)=ax^2+bx+c\)
Ta có : \(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow\) \(f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)
\(=13a+b+c\)
\(=0\)
\(\Rightarrow\) \(-f\left(-2\right)=f\left(3\right)\)
\(\Rightarrow\) \(f\left(-2\right).f\left(3\right)=f\left(-2\right).-f\left(-2\right)=-\left[f\left(-4\right)\right]^2\le0\)
\(\Rightarrow\) \(đpcm\)
Study well ! >_<
Giả sử b khác 0 => \(\sqrt{p}=-\frac{a}{b}\)
p là số nguyên tố nên \(\sqrt{p}\) là số vô tỉ
a; b là số hữu tỉ nên \(-\frac{a}{b}\) là số hữu tỉ
=> Vô lý=> b = 0 => a = 0 => đpcm
p là số nguyên tố=>\(\sqrt{p}\)là số vô tỉ
=>b\(\sqrt{p}\) là số vô tỉ nếu b khác 0 hoặc b\(\sqrt{p}\)=0 nếu b=0
=>a+b\(\sqrt{p}\)=0
*)b khác 0 =>a=-b\(\sqrt{p}\)
mà a là số hữ tỉ b\(\sqrt{p}\) là số vô tỉ(L)
*)b=0=>b\(\sqrt{p}\)=0=>a+0=0
=>a=0
Vậy a=b=0