Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{\left(a^2+b^2\right)\left(1+a+1+b\right)}\)
\(=\sqrt{2+a+b}\le\sqrt{2+\sqrt{2\left(a^2+b^2\right)}}=\sqrt{2+\sqrt{2}}\)
Dấu = xảy ra khi \(a=b=\dfrac{1}{\sqrt{2}}\)
Nguyễn Bùi Đại Hiệp xem lại đề nhé bạn, dạng đề như này thì dữ kiện đầu phải là \(a+b+c=5\) nhé.
Sửa đề : cho a,b,c là các số thực thỏa \(a+b+c=5\) và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Bài làm :
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=9\)
\(\Leftrightarrow5+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=9\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)
Khi đó : \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(=\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
Tương tự : \(\left\{{}\begin{matrix}b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)\\c+2=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{b}+\sqrt{c}\right)\end{matrix}\right.\)
Ta có biến đổi của vế trái :
\(VT=\Sigma\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)
\(VT=\Sigma\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(VT=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\cdot\left(\sqrt{b}+\sqrt{c}\right)^2\cdot\left(\sqrt{c}+\sqrt{a}\right)^2}}\)
\(VT=\frac{2\cdot2}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
\(VT=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=VP\) ( đpcm )
p/s: làm hơi tắt một chút, mong bạn thông cảm.
http://diendantoanhoc.net/topic/118669-violympic9-c%C3%A1c-b%C3%A0i-to%C3%A1n-violympic-l%E1%BB%9Bp-9-cho-k%C3%AC-thi-qu%E1%BB%91c-gia-s%E1%BA%AFp-t%E1%BB%9Bi/page-5
http://diendantoanhoc.net/topic/136445-boxed-textbftopic-%C3%B4n-thi-violympic-qu%E1%BB%91c-gia-2014-2015/page-3
\(A=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-1=9\)
\(B=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)
\(B>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{35}+\sqrt{36}}\)
\(B>2\left(\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+...+\frac{\sqrt{36}-\sqrt{35}}{\left(\sqrt{36}-\sqrt{35}\right)\left(\sqrt{36}+\sqrt{35}\right)}\right)\)
\(B>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)
\(B>2\left(\sqrt{36}-1\right)=10>9=A\)
\(\Rightarrow B>A\)
Để biểu thức B có nghĩa thì \(xy\ne0\)
Khi đó ta có:
\(x^3+y^3=2x^2y^2\)
\(\Leftrightarrow\left(x^3+y^3\right)^2=4x^4y^4\)
\(\Leftrightarrow x^6+y^6+2x^3y^3=4x^4y^4\)
\(\Leftrightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)
\(\Leftrightarrow\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)
\(\Leftrightarrow1-\frac{1}{xy}=\left(\frac{x^3-y^3}{2x^2y^2}\right)^2\)
\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\left|\frac{x^3-y^3}{2x^2y^2}\right|\) là một số hữu tỉ
Làm chữa lỗi phát:v Đến giờ mới nghĩ ra(thực ra là tình cờ xem lại ngày xưa:(
\(VT=\Sigma\frac{\sqrt{\left(a^2+b^2\right)2ab}}{a^2+b^2}\ge\Sigma\frac{2ab}{a^2+b^2}+3-3\)
\(=\Sigma\frac{\left(a+b\right)^2}{a^2+b^2}-3\ge\frac{\left[2\left(a+b+c\right)\right]^2}{2\left(a^2+b^2+c^2\right)}-3\)
\(=\frac{2\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)}-3=\frac{2\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2}-3\)
\(=\frac{4\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}-3=1\)(qed)
Đẳng thức xảy ra khi a = b = 1; c = 0 và các hoán vị (xét sơ sơ thôi chớ xét chi tiết em không biết làm đâu:v)
P.s: Chả biết có đúng hay không nữa:(( Lần này mà không đúng thì khổ.
Từ giả thiết ta suy ra \(a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\to\left(a+\sqrt{1-a^2}\right)^2=\left(b+\sqrt{1-b^2}\right)^2\)
\(\to a^2+2a\sqrt{1-a^2}+\left(1-a^2\right)=b^2+2b\sqrt{1-b^2}+\left(1-b^2\right)\)
\(\to a\sqrt{1-a^2}=b\sqrt{1-b^2}\to a^2\left(1-a^2\right)=b^2\left(1-b^2\right)\to a^2-a^4=b^2-b^4\)
\(\to\left(a^4-b^4\right)=a^2-b^2\to\left(a^2-b^2\right)\left(a^2+b^2-1\right)=0.\)
Vì a,b dương khác nhau nên \(a^2-b^2\ne0\to a^2+b^2=1.\) (ĐPCM)