\(5\left(a+b\right)^2+ab\)chia hết cho 441 thì ab cũng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

Do \(5\left(a+b\right)^2+ab\)chia hết cho 441 = 212 nên

\(4\left(5\left(a+b\right)^2+ab\right)=20\left(a+b\right)^2+4ab\)chia hết cho 212

Ta lại có

\(20\left(a+b\right)^2+4ab=20\left(a+b\right)^2+\left(a+b\right)^2-\left(a-b\right)^2\)

\(=21\left(a+b\right)^2-\left(a-b\right)^2\)

Vì 21(a+b)2 chia hết cho 21 nên (a - b)2 chia hết cho 21

Ta thấy rằng 21 = 3.7 (3,7 là hai số nguyên tố)

Nên (a - b)2 chia hết cho 3 và 7

=> (a - b) chia hết cho 3 và 7 (vì 3, 7 là số nguyên tố)

=> (a - b) chia hết cho 21

=> (a - b)2 chia hết cho 212 

Kết hợp với \(21\left(a+b\right)^2-\left(a-b\right)^2\)chia hết cho 212

=> 21(a + b)2 chia hết cho 212

=> (a + b) chia hết cho 21

Chứng minh tương tự ta se suy ra được (a + b)2 chia hết cho 212

=> 5(a + b)2 chia hết cho 212

=> ab chia hết cho 212 = 441

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

7 tháng 4 2017

Xét các dạng của n trong phép chia cho 2 và 3

2k  , 2k+1

3p, 3p+1. 3p+2