Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12. Ta có \(ab\le\frac{a^2+b^2}{2}\)
=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu bằng xảy ra khi a=b=c=1
Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1
13. Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)
=> \(1\ge\frac{9}{a+b+c+3}\)
=> \(a+b+c\ge6\)
Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)
Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)
Cộng 3 BT trên ta có
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)
Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)
=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)
Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)
<=> \(a^2+b^2\ge2ab\)(luôn đúng )
=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)
=> \(P\ge2\)
Vậy \(MinP=2\)khi a=b=c=2
Lưu ý : Chỗ .... là tương tự
Câu 2:
\(x^2-2\left(m-3\right)x-1=0\)
a=1; b=-2m+6; c=-1
Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)
\(=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=\left(2m-6\right)^2-3\cdot\left(-1\right)\)
\(=4m^2-24m+36+3\)
\(=\left(2m-6\right)^2+3\ge3\)
Dấu '=' xảy ra khi m=3
Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(
Bài 1:
a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b: Để P<1 thì P-1<0
\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)
=>căn a-2>0
=>a>4
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
\(a.\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{3}.\sqrt{3}}{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}=\sqrt{6}-\dfrac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{3\sqrt{2}-3\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{-3\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=-3\) \(b.\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)=\left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)=8-3=5\) \(c.\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}=\dfrac{2\sqrt{5}}{4}.\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\) \(d.\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)=\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)=9-a\)
Đề thi học kỳ 1 trường Ams
**Min
Từ \(a^2+b^2+c^2=1\Rightarrow a^2\le1;b^2\le1;c^2\le1\)
\(\Rightarrow a\le1;b\le1;c\le1\Rightarrow a^2\le a;b^2\le b;c^2\le c\)
Khi đó:
\(\sqrt{a+b^2}\ge\sqrt{a^2+b^2};\sqrt{b+c^2}\ge\sqrt{b^2+c^2};\sqrt{c+a^2}\ge\sqrt{c^2+a^2}\)
\(\Rightarrow P\ge\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
\(\Rightarrow P\ge\sqrt{1-c^2}+\sqrt{1-a^2}+\sqrt{1-b^2}\)
Ta có:
\(\sqrt{1-c^2}\ge1-c^2\Leftrightarrow1-c^2\ge1-2c^2+c^4\Leftrightarrow c^2\left(1-c^2\right)\ge0\left(true!!!\right)\)
Tương tự cộng lại:
\(P\ge3-\left(a^2+b^2+c^2\right)=2\)
dấu "=" xảy ra tại \(a=b=0;c=1\) and hoán vị.
**Max
Có BĐT phụ sau:\(\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\left(ezprove\right)\)
Áp dụng:
\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)
\(\le\sqrt{3\left(a+b+c+a^2+b^2+c^2\right)}\)
\(=\sqrt{3\left(a+b+c\right)+3}\)
\(\le\sqrt{3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+3\right)}=\sqrt{3\cdot\sqrt{3}+3}\)
Dấu "=" xảy ra tại \(a=b=c=\pm\frac{1}{\sqrt{3}}\)
Áp dụng BĐT Minkowski, ta có:
\(A\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)
Tiếp tục áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(A\ge\sqrt{6^2+\left(\dfrac{9}{a+b+c}\right)^2}=\sqrt{6^2+\left(\dfrac{9}{6}\right)^2}=\dfrac{3\sqrt{17}}{2}\)
Đẳng thức xảy ra khi \(a=b=c=2\)
1/ \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)
\(=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
\(\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{16}.\frac{2}{ab}\)
\(\ge1+\frac{15}{8}.\frac{1}{\frac{\left(a+b\right)^2}{4}}\le1+\frac{15}{8}.\frac{1}{\frac{1}{4}}=\frac{17}{2}\)