\(\in\)N* thỏa mãn \(\frac{a+1}{b}+\frac{b+1}{a}\in Z\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

6 tháng 4 2017

1 bai thoi cung dc

20 tháng 3 2017

a=1, b=1

Câu 2 để nghĩ đã

20 tháng 3 2017

hình như đề sai hay sao ấy bạn: 

21 tháng 7 2020

a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)

Dấu "=" xảy ra <=> a=b

Áp dụng BĐT (*) vào bài toán ta có:

\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Tiếp tục áp dụng BĐT (*) ta có:

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)

21 tháng 7 2020

b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:

\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)

Cộng theo vế 3 BĐT ta có:

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra <=> a=b=c

13 tháng 5 2021

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)

=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)

=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)

Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)

=> (1) đúng 

=> BĐTđược chứng minh

14 tháng 5 2021

b)Đặt  \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).

\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).

\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).

Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).

 Chứng minh tương tự, ta được:

\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).

Chứng minh tương tự, ta được:

\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).

\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).

\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).

Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).

\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).

\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).

\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(A\ge\frac{15}{2}\).

Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).

Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).