Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3a + 11b chia hết cho 17
13( 3a + 11b ) chia hết cho 17
Hay : 39a + 143b chia hết cho 17
Mà : 34a + 136b chia hết cho 17
Suy ra : (39a+143b)-(34a+136b)=5a+7b chia hết cho 17
Bạn tự chứng minh theo chiều ngược lại nhé !
\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)
\(\Rightarrow4\left(3a+2b\right)⋮17\)
\(\Rightarrow12a+8b⋮17\)
\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)
\(\text{#Not_chắv_:)}\)
a. Ta có :
2(10a + b) - (3a+2b)
= 20a+2b-3a-2b
= 17a
Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17
=> 2( 10a+b) - (3a+2b) \(\vdots\) 17
Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17
Mà (2,17)=1 => 10a+b \(\vdots\) 17
Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17
b. Câu b cx tương tự nha
a) Ta có: (10a + b)+8(3a + 2b)=34a+17b chia hết cho 17.
Mặt khác: 3a+2b chia hết cho 17 => 8(3a+2b) chia hết cho 17, từ đó 10a + b chia hết cho 17.
Ngược lại, do 10a + b chia hết cho 17 => 8(3a + 2b) chia hết cho 17 mà (8; 17)= 1 => 3a+2b chia hết cho 17.
b) Tương tự, lấy (x + 7y) + 5(6x + 11y)
c) Cũng tương tự, lấy (x + 10y) + 3(4x +y)
Nhớ tíck mình nha! :)
a) \(\frac{x}{3}-\frac{1}{y}=\frac{1}{6}\)
Quy đồng \(\frac{x}{3}\)với \(\frac{1}{6}\). Ta có:
\(\frac{x}{3}=\frac{x.6}{3.6}=\frac{x6}{18}\)
\(\frac{1}{6}=\frac{1.3}{6.3}=\frac{3}{18}\)
\(\Rightarrow\frac{x}{3}-\frac{1}{y}=\frac{1}{6}\Leftrightarrow\frac{x6}{18}-\frac{1}{y}=\frac{3}{18}\)
Quy đồng \(\frac{1}{y}\)với \(\frac{3}{18}\). Ta có:
Đặt mẫu số chung: 18. Ta có:
\(\frac{1}{y}=\frac{18}{18}\) ( Vì khi quy đồng mẫu số của (1/y) phải là 18. Nên (1/y) = (1.18)/18 = (18/18) )
Vì y là mẫu. Suy ra y = 18
\(\Rightarrow\frac{x6}{18}-\frac{1}{y}=\frac{3}{18}\Leftrightarrow\frac{x6}{18}-\frac{18}{18}=\frac{3}{18}\)
\(\Leftrightarrow\frac{x6}{18}=\frac{18}{18}+\frac{3}{18}\Leftrightarrow\frac{x6}{18}=\frac{21}{18}\)
\(\Rightarrow x6=21\Rightarrow x=\frac{21}{6}=\frac{7}{2}\) ( và vì x là tử suy ra x = 7)
Vậy .....
b) Ta có: \(\left(3a+11b\right)⋮17\Leftrightarrow\left(5a+17b\right)⋮17\)
\(\Rightarrow\left(a+b\right)⋮17\)
Vì ( a + b) chia hết cho 17
\(\Rightarrow\left(..a+..b\right)⋮17\). Thế số vào chỗ ". . " Ta có:
\(\left(..a+..b\right)=\left(5a+17b\right)⋮17\left(ĐPCM\right)\)
Đặt :
\(\left\{{}\begin{matrix}x=3a+2b\\y=10a+b\end{matrix}\right.\)
\(\Leftrightarrow2y-x=2\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b=17a\)
Vì \(17a⋮17\)
\(\Leftrightarrow2y-x⋮17\)
Mà \(x⋮17\)
\(\Leftrightarrow2y⋮17\)
\(\Leftrightarrow2\left(10a+b\right)⋮17\)
\(\Leftrightarrow10a+b⋮17\left(ƯCLN\left(2,17\right)=1\right)\)
\(\Leftrightarrowđpcm\)
Ta có:
\(3a+2b⋮17\\ \Leftrightarrow30a+20b⋮17\\ 30a+20b-17b⋮17\\ \Leftrightarrow30a+3b⋮17\\ \Leftrightarrow3\left(10a+b\right)⋮17\)
Vì \(3⋮̸17\Rightarrow10a+b⋮17\left(dpcm\right)\)