Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 23a + 23b chia hết cho 23
=>\(7a+3b+16a+20b\) chia hết cho 23
=>\(7a+3b+4\left(4a+5b\right)\)chia hết cho 23
Theo đề bài: 7a + 3b chia hết cho 23
=> 4(4a + 5b) chia hết cho 23
Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23 (đpcm)

Xét hiệu:
7(4a + 5b) - 4(7a + 3b)
= 28a + 35b - 28a - 12b.
= (28a - 28a) + (35b - 12b)
= 23b
Vì 23 chia hết cho 23 => 23b chia hết cho 23 => 7(4a + 5b) - 4(7a + 3b) chia hết cho 23 (1)
Mà 7a + 3b chia hết cho 23 => 4(7a + 3b) chia hết cho 3 (2)
Từ (1) và (2) => 7(4a + 5b) chia hết cho 23.
=> 4a + 5b chia hết cho 23 (ƯCLN(7; 23) = 1) (ĐPCM)

a) abcabc=abc . 1001=abc . 7 . 11 .13 chia hết cho 7,11,13
Vậy abcabc chia hết cho 7,11;13 (đpcm)
b) abcdeg=abc.1000+deg=2.deg.1000+deg=deg.2000+deg=deg.(2000+1)=deg.2001=deg.3.23.29 chia hết cho 23,29
Vậy abcdeg chia hết cho 23 và 29 với abc=2.deg (đpcm)

Ta có: 5(7a + 3b) : 23 = k (với k thuộc N)
=> 35a + 15b = 23k => 15b = 23k - 35a
Ta có: 3(4a + 5b) = 12a + 15b = 12a + 23k - 35a
= (-23a) + 23k = 23(-a + k)
Do 23(-a + k) ⋮ 23 => 3(4a + 5b) ⋮ 23 => 4a + 5b ⋮ 23 (đpcm)
Đề bài : Cho a,b \(\in\) Z thõa mãn 7a + 3b chia hết cho 23 . Chứng minh rằng 4a + 5b chia hết cho 23
Lời giải
Ta có : ( 7a + 3b ) ⋮ 23
Xét hiệu : ( 4a + 5b ) - ( 7a + 3b )
= 7.( 4a + 5b ) - 4.( 7a + 3b )
= ( 28a + 35b ) - ( 28a + 12b )
= 28a + 35b - 28a - 12b
= ( 28a - 28a ) + ( 35b - 12b )
= 23b
Mà 23 ⋮ 23 ( 1 )
nên 23b ⋮ 23 ( 2 )
Theo đề bài , ( 7a + 3b ) ⋮ 23 ( 3)
Từ ( 1 ) ; ( 2 ) và ( 3 ) ⇒ ( 4a + 5a ) ⋮ 23