A B 20 o 60 o C D E <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

Từ E kẻ Ex song song với AB và CD.

A B 20 o 60 o C D E x

\(\widehat{AEx}=\widehat{BAE}=20^o\) (so le) 

=> \(\widehat{xEC}=\widehat{AEC}-\widehat{AEx}=60^o-20^o=40^o\)

\(\widehat{ECD}=\widehat{xEC}=40^o\) (so le)

8 tháng 12 2015

xin lỗi tớ mới học lớp 5

8 tháng 12 2015

Qua điểm E vẽ đường thẳng x song song với AB và CD
Ta có: góc BAE = AEx = 40o (so le trong)
Mặt khác: AEx + xEC = AEC

=> xEC = AEC - AEx = 60o - 40o = 20o

=> ECD = xEC = 20o (so le trong)

Vậy ECD = 20o

27 tháng 1 2020

Tham khảo

https://h.vn/hoi-dap/question/627412.html

Học tốt

27 tháng 1 2020

sao k vào đc

5 tháng 6 2016

Đề này hình như sai

5 tháng 6 2016

giả sử AB cắt CE tại I. ta có góc EIB = góc EAI + góc AEI = 100 độ( góc ngoài tam giác AIE).

mà góc ECD = góc EIB ( hai góc đồng vị)

vậy góc ECD = 100 độ

13 tháng 2 2016

bạn vẽ hình đi ^^

4 tháng 6 2020

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

 
 
 
9 tháng 6 2020

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB