K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

1:

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

AB=CD

\(\widehat{OBA}=\widehat{ODC}\)(hai góc so le trong, AB//CD)

Do đó: ΔOAB=ΔOCD

=>OA=OC và OB=OD

=>O là trung điểm chung của AC và BD

b: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}=\widehat{COB}\)

OD=OB

Do đó: ΔOAD=ΔOCB

=>\(\widehat{OAD}=\widehat{OCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

c: ΔOAD=ΔOCB

=>AD=BC

2:

a: Xét ΔAHO vuông tại H và ΔCKO vuông tại K có

OA=OC

\(\widehat{AOH}=\widehat{COK}\)

Do đó: ΔAHO=ΔCKO

=>AH=CK và OH=OK

b: Xét ΔAOK và ΔCOH có

OA=OC

\(\widehat{AOK}=\widehat{COH}\)

OK=OH

Do đó; ΔAOK=ΔCOH

=>\(\widehat{OAK}=\widehat{OCH}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AK//CH

c: OH=OK

H,O,K thẳng hàng

Do đó: O là trung điểm của HK

d: AH\(\perp\)BD

CK\(\perp\)BD

Do đó: AH//CK

=>AE//CF

Xét tứ giác AECF có

AE//CF

AF//CE

Do đó: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường

mà O là trung điểm của AC

nen O là trung điểm của EF

3: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của MN

4: Xét ΔOIB và ΔOVD có

\(\widehat{IBO}=\widehat{VDO}\)

OB=OD

\(\widehat{IOB}=\widehat{VOD}\)

Do đó: ΔOIB=ΔOVD

=>BI=DV

13 tháng 3 2020

a

XÉT ΔAHB VÀ ΔDBH

BH- CẠNH CHUNG

^AHB=^DBH

AH=BD

=>ΔAHB = ΔDBH (CGC)

B) VÌ ΔAHB = ΔDBH

=> ^ABH=^DHB

MÀ  2 GÓC NÀY Ở T SO LE TRONG CỦA AB VÀ HD

=>AB//HD

C)

VÌ ΔAHB = ΔDBH

=>AB=DH (2CTU)

=>AC=BD(2CTU)

XÉT TAM GIÁC BAD VÀ TAM GIÁC HAD            P/S : CÓ AI ĐỂ Ý 2 TỪ TA BAD VÀ HADKO ;V

AB=DH

AC=BD

AD-CẠNH CHUNG

=>TAM GIÁC BAD = TAM GIÁC HAD

=>^BAD=^HDA

=> ^BAO=^ODH

XÉT TAM GIÁC BAO VÀ TAM GIÁC HDO

^BAD=^HDA

AB=HD

^BAO=^ODH

=> TAM GIÁC BAO = TAM GIÁC HDO

=> BO=HO (2CTU)

=> O là trung điểm của BH

19 tháng 11 2017

29 tháng 7 2018

a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE

=> ^ABD = ^ACE

TG ABD = TG ACE (c.g.c)

=> ABD=ACE => TG ADE cân(đpcm)

b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)

=> BH=CK (đpcm)

=> DH=KE

* Ta có: AD = AE (vì TG ADE cân)

DH=KE(CMT)

mà AD - DH = AH

     AE - KE = AK

=> AH = AK

và DH=KE ( CMT)

Do đó: HK là đường trung bình của TG ADE

=> HK // DE

c, ý b là BOC?

^HBD=^KCE (TG HBD= TG KCE )

=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)

=> TG OBC cân