Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a+b+c+ab+bc+ca=6abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=6\)
Áp dụng BĐT :
\(xy+yz+zx\le x^2+y^2+z^2\)ta có :
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\left(1\right)\)
Áp dụng bất đẳng thức Bunhia ta có :
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\left(1^2+1^2+1^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{3}.\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\left(2\right)\)
Cộng theo vế (1) và (2) ta được :
\(6=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)\(+\sqrt{3}.\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)
\(\Leftrightarrow P+\sqrt{3}.\sqrt{P}\ge6\)
\(\Leftrightarrow\left(\sqrt{P}-\sqrt{3}\right)\left(\sqrt{P}+2\sqrt{3}\right)\ge0\)
\(\Leftrightarrow P\ge3\)
Vậy \(P_{min}=3\)
Dấu " = " xảy ra khi \(a=b=c=1\)
Chúc bạn học tốt !!!
Từ \(a+b+c+ab+bc+ca=6abc\)
\(\Rightarrow\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
Cho \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\) thì ta có:
\(x^2+y^2+z^2\ge3\forall\hept{\begin{cases}x+y+z+xy+yz+xz=6\\x,y,z>0\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(x^2+1\ge2\sqrt{x^2}=2x\)
\(y^2+1\ge2\sqrt{y^2}=2y\)
\(z^2+1\ge2\sqrt{z^2}=2z\)
Cộng theo vế 3 BĐT trên ta có:
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)
Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)
Cộng theo vế của (1) và (2) ta có:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\Rightarrow x^2+y^2+z^2\ge3\)
Đẳng thức xảy ra khi \(a=b=c=1\)
GT của bài toán được viết lại thành\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
áp dụng bđt Cauchy ta được
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)
\(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)
cộng các bất đẳng thức trên theo vế ta được \(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2\cdot6=12\)
hay \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
đẳng thức được chứng minh, dấu "=" xảy ra khi a=b=c=1
Từ dk suy ra 1/bc+1/ac+1/ab+1/c+1/b+1/a=6 đặt 1/a=x;1/b=y;1/c=z→x+y+x+xy+yz+xz=6 ta phải cm x2+y2+z2>=3 Ta có:2(x2+y2+z2)>=2(xy+yz+xz) (1) (x-1)2>=0→x2>=2x-1 Tương tự :y2>=2y-1;z2>=2z-1 do đó :x2+y2+z2>=2(x+y+z)-3 (2) cộng vế 1 vs 2 ta có:3(x2+y2+z2)>=2(x+y+z+xy+yz+xz)-3 <=>3(x2+y2+z2)>=2.6-3 <=>x2+y2+z2>=3
\(Từ GT, ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge6\) Áp dụng bđt AM - GM, ta lại có: \(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\) \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\) Cộng theo vế ta có: \(3\left(\text{∑}\frac{1}{a^2}\right)+3\ge2\left(\text{∑}\frac{1}{a}+\text{∑}\frac{1}{ab}\right)\Leftrightarrow\text{∑}\frac{1} {a^2}\ge3\left(đ\text{pcm}\right)\) \(\text{Dau }"="\Leftrightarrow a=b=c=1\)
Từ GT, ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge6\)
Áp dụng bđt AM - GM, ta lại có:
\(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\)
Cộng theo vế ta có:
\(3\left(\text{∑}\frac{1}{a^2}\right)+3\ge2\left(\text{∑}\frac{1}{a}+\text{∑}\frac{1}{ab}\right)\Leftrightarrow\text{∑}\frac{1}{a^2}\ge3\left(đ\text{pcm}\right)\)
\(\text{Dau }"="\Leftrightarrow a=b=c=1\)