\(ab+bc+ca\le a^2+b^2+c^2&...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

Ta có:

\(\left(a+b\right)^2\ge0\)

\(\Rightarrow a^2+2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\) (1).

\(\left(b+c\right)^2\ge0\)

\(\Rightarrow b^2+2bc+c^2\ge0\)

\(\Rightarrow b^2+c^2\ge2bc\) (2).

\(\left(c+a\right)^2\ge0\)

\(\Rightarrow c^2+2ca+a^2\ge0\)

\(\Rightarrow c^2+a^2\ge2ac\) (3).

Cộng theo vế (1), (2) và (3) ta được:

\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow2.\left(a^2+b^2+c^2\right)\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) (*).

Vì a, b, c là độ dài ba cạnh của tam giác (gt).

\(\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).

=> \(\left\{{}\begin{matrix}ac+bc>c^2\left(4\right)\\ab+ac>a^2\left(5\right)\\bc+ab>b^2\left(6\right)\end{matrix}\right.\)

Cộng theo vế (4), (5) và (6) ta được:

\(ac+bc+ab+ac+bc+ab>a^2+b^2+c^2\)

\(\Rightarrow2ab+2bc+2ac>a^2+b^2+c^2\)

\(\Rightarrow2.\left(ab+bc+ca\right)>a^2+b^2+c^2\) (**).

Từ (*) và (**) => \(ab+bc+ca\le a^2+b^2+c^2< 2.\left(ab+bc+ca\right)\left(đpcm\right).\)

Chúc bạn học tốt!

11 tháng 2 2020

Theo BĐTBĐT tam giác ta có:
a<b+c
=>a2<ab+ac
b<c+a
=>b2<bc+ba
c<a+b
=>c2<ca+cb
Cộng vế với vế 3 BĐT trên ta được:
a2+b2+c2<2(ab+bc+ca)(1)

Ta có (a−b)2+(b−c)2+(c−a)2≥0 với mọi a,b,c là độ dài 3 cạnh của tam giác
<=>a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0
<=>2(a2+b2+c2)≥2(ab+bc+ca)
<=>ab+bc+ca≤a2+b2+c2(2)
Dấu = xảy ra khi a=b=c<=> tam giác đó đều
(1),(2)=>đpcm

2 tháng 10 2017

Theo BĐT tam giác ta có:

\(\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

17 tháng 4 2016

bằng nhau trong trường hợp tam giác đều bạn tự làm nha còn bé hơn thì trước tiên viết 3 bất đẳng thức của tam giác sau đó cho 1 giả sử để chứng minh hoặc là biến đổi bất đẳng thức của tam giác giờ mình lười làm lắm hướng dẫn như vậy thôi

23 tháng 4 2016

Từ đề => a,b,c \(\ge\)0 . Ta lại có :\(ab+ac+bc\le a^2+b^2+c^2\) 

=> \(3\left(ab+ac+bc\right)\le\left(a+b+c\right)^2\) luôn đúng với mọi a,b,c \(\ge\) 0

=> dpcm

Dấu "=" xảy ra khi a=b=c hay khi  tam giác ABC đều 

14 tháng 1 2019

Ai nhanh mình chọn!( Bài này chỉ để thử sức các bn, chứ mik biết lm rồi)

15 tháng 1 2019

Áp dụng bất đăng thức tam giác vào tam giác đã cho ta được:

\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\)

Ta có:

\(a^2+b^2+c^2=aa+bb+cc\)\(< a\left(c+b\right)+b\left(a+c\right)+c\left(a+b\right)\)

                                                                    \(=ac+ab+ab+bc+ac+bc\)

                                                                      \(=2ab+2ac+2bc\)

                                                                    \(=2\left(ab+ac+bc\right)\)                                                   (đpcm)

9 tháng 4 2017

em chép nhầm đề à

9 tháng 4 2017

dạ đề thi toán 7 cấp thành phố

ko sai đâu ạ