Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Suy ra \(a=b=c\).
Khi đó: \(M=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\).
Bài 1 :
\(a)\)Ta có :
\(A=\frac{2.6^9-4^5.9^4}{20.6^8+2^{10}.3^8}\)
\(A=\frac{2.\left(2.3\right)^9-\left(2^2\right)^5.\left(3^2\right)^4}{\left(2^2.5\right).\left(2.3\right)^8+2^{10}.3^8}\)
\(A=\frac{2.2^9.3^9-2^{10}.3^8}{2^2.5.2^8.3^8+2^{10}.3^8}\)
\(A=\frac{2^{10}.3^9-2^{10}.3^8}{2^{10}.3^8.5+2^{10}.3^8}\)
\(A=\frac{2^{10}.3^8\left(3-1\right)}{2^{10}.3^8\left(5+1\right)}\)
\(A=\frac{2}{6}\)
\(A=\frac{1}{3}\)
Vậy \(A=\frac{1}{3}\)
Năm mới zui zẻ nhé ^^
Ta có \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{bca}\)
Lại có\(\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c}{c}\)
=> \(\frac{b+c-a}{a}+2=\frac{a+c-b}{b}+2=\frac{a+b-c}{c}+2\)
=> \(\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
Nếu a + b + c = 0
=> a + b = -c
=> b + c = -a
=> a + c = - b
Khi đó A = \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{bca}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)
Nếu a + b + c \(\ne\) 0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Khi đó A = \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2b.2c}{abc}=\frac{8abc}{abc}=8\)
Vậy khi a + b + c = 0 => A = -1
khi a + b + c \(\ne\)0 => A = 8
Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\).
=> Theo t/c của dãy tỉ số bằng nhau :
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+a+c}=1\)
=>a=b=c
Thay c;b bằng a ta có :
\(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b = b/c = c/a = a+b+c/b+c+a = 1
=> a=b;b=c;c=a
=> a=b=c
Khi đó : a^2+b^2+c^2/(a+b+c)^2 = 3a^2/(3a)^2 = 3a^2/9a^2 = 1/3
Tk mk nha
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\left(vì\text{ a;b;c dương}\right)\)
\(\Rightarrow a=b=c\Rightarrow\frac{a^2+b^2+c^2}{a^2b+b^2c+c^2a}=\frac{3a^2}{3a^3}=\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)