![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn nên viết đề bài bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^{2022}+b^{2022}}{c^{2022}+d^{2022}}=\dfrac{b^2k^{2022}+b^{2022}}{d^{2022}k^{2022}+d^{2022}}=\left(\dfrac{b}{d}\right)^{2022}\)
\(\dfrac{\left(a+b\right)^{2022}}{\left(c+d\right)^{2022}}=\dfrac{\left(bk+b\right)^{2022}}{\left(dk+d\right)^{2022}}=\left(\dfrac{b}{d}\right)^{2022}\)
=>\(\dfrac{a^{2022}+b^{2022}}{c^{2022}+d^{2022}}=\dfrac{\left(a+b\right)^{2022}}{\left(c+d\right)^{2022}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$b^2=ac\Rightarrow \frac{b}{a}=\frac{c}{b}$
Đặt $\frac{b}{a}=\frac{c}{b}=k\Rightarrow b=ak; c=bk$
Khi đó:
$\frac{a^{2022}+b^{2022}}{b^{2022}+c^{2022}}=\frac{a^{2022}+(ak)^{2022}}{b^{2022}+(bk)^{2022}}$
$=\frac{a^{2022}(1+k^{2022})}{b^{2022}(1+k^{2022})}=\frac{a^{2022}}{b^{2022}} (1)$
Và:
$(\frac{a+b}{b+c})^{2022}=(\frac{a+ak}{b+bk})^{2022}$
$=[\frac{a(k+1)}{b(1+k)}]^{2022}=(\frac{a}{b})^{2022}=\frac{a^{2022}}{b^{2022}}(2)$
Từ $(1); (2)$ ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
C = A - B
= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)
= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²
= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)
= 6x² + 2023
Do x² ≥ 0 với mọi x
⇒ 6x² ≥ 0 với mọi x
⇒ 6x² + 2023 > 0 với mọi x
Vậy C luôn dương với mọi x
C = A - B
= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)
= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²
= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)
= 6x² + 2023
Do x² ≥ 0 với mọi x
⇒ 6x² ≥ 0 với mọi x
⇒ 6x² + 2023 > 0 với mọi x
Vậy C luôn dương với mọi x
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
Vì a+b+c\(\ne\) 0 => \(\left\{{}\begin{matrix}\dfrac{a}{b}=1\\\dfrac{b}{c}=1\\\dfrac{c}{a}=1\end{matrix}\right.\Leftrightarrow a=b=c}\)
Vì a+b+c=2022 => \(a=b=c=\dfrac{2022}{3}=674\)
Phần lỗi là \(\left\{{}\begin{matrix}\dfrac{a}{b}=1\\\dfrac{b}{c}=1\\\dfrac{c}{a}=1\end{matrix}\right.\) => a=b=c