Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a/b = b/c =c/a
áp dụng tính chất dãy tỉ số bằng nhau ta có
a/b =b/c = c/a = a+b+c / a+b+c =1 ( do a+b+c khác 0)
=> a =b , b=c , c=a
mà a= 2015 =>a=b=c =2015
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Do đó :
\(\frac{a}{b}=1\)\(\Leftrightarrow\)\(a=b\)
\(\frac{b}{c}=1\)\(\Leftrightarrow\)\(b=c\)
\(\frac{c}{a}=1\)\(\Leftrightarrow\)\(c=a\)
Suy ra \(\frac{a^3.b^3.c^{20150}}{b^{2015}}=\frac{a^3.a^3.a^{20150}}{a^{2015}}=\frac{a^{20156}}{a^{2015}}=a^{18141}\)
Chúc bạn học tốt ~
áp dụng t/c của dãy tỉ số =nhau
=>2015/b=b/c=c/2015=(2015+b+c)/(b+c+2015)=1
2015/b=1=>b=2015
c/2015=1=>c=1/2015
a, Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k,y=4k,z=3k\)
Ta có: \(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{4k}{6k}=\frac{2}{3}\)
b, \(Q+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(Q+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(Q+3=2015\cdot\frac{1}{5}=403\)
=>Q=403-3=400
a,\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{4}{6}=\frac{2}{3}\)
b, \(Q=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow Q+3=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)+\left(1+\frac{c}{a+b}\right)\)
\(\Rightarrow Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(\Rightarrow Q+3=\frac{a+b+c}{b+c+c+a+a+b}=\frac{2015}{5}=403\)
\(\Rightarrow Q=400\)
Vậy Q = 400
Áp dụng tính chất dãy tỷ số bằng nhau ta đc\(\frac{-a+b+c}{a}=\frac{a-b+c}{b}=\)\(\frac{a+b-c}{c}=\frac{a+b+c}{a+b+c}=1\)
Dễ dàng cm đc \(a=b=c\)tính đc P=8