![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(ab2 - ba2) = cd2
(ab - ba ) (ab + ba ) = cd2 =>9(a-b)11(a+b)=cd2 => a+b =11 và a -b = 9 hoặc a -b =1 ; a-b = 4
a-b | 1 | 4 | 9 | |
a+b | 11 | 11 | 11 | |
a | 6 | /// | //// | |
b | 5 |
=> cd2 = 99.11 = 332 => cd =33
Vậy a =6 ; b = 5 ; c =d = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
A D C B z y x z'
a) Vì D thuộc đoạn thẳng AC nên D nằm giữa A và C
\(\Rightarrow\) AC = AD + DC = 4cm + 3cm = 7cm
b) Chứng minh tia BD nằm giữa hai tia BA và BC
Ta có đẳng thức sau: \(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}\)
\(\Rightarrow\widehat{DBC}=\widehat{ABC}-\widehat{ABD}\)
\(=55^o-30^o=25^o\)
Vậy \(\widehat{DBC}=25^o\)
c) Xét hai trường hợp:
- Trường hợp 1: Tia Bz và BD nằm về hai phía nửa mặt phẳng có bờ là AB nên tia Ba nằm giữa hai tia Bz và BD.
Tính được: \(\widehat{ABz}=90^o-\widehat{ABD}=90^o-30^o=60^o\)
- Trường hợp 2: Tia Bz và BD nằm về cùng một nửa mặt phẳng có bờ là
BA nên tia BD nằm giữa hai tia Bz và BA.
Tính được: \(\widehat{ABz}=90^o+30^o=120^o\)
~ Học tốt ~
Địt mẹ mày.Nói rõ ràng ra xem nào.Nói như thế này ai mà hiểu được?
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)
Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)
Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)
2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)
Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)
Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0
Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)
\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)
Như vậy, \(n< 5\)
Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)
Với \(n=2;1!+2!=5\left(KTM\right)\)
Với \(n=3;1!+2!+3!=9\left(TM\right)\)
Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)
Vậy n bằng 1 hoặc 3
3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)
Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố)
\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)
\(\Leftrightarrow ab+b^2+bc+bd=pb\)
\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)
Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)
Vậy a+b+c+d là hợp số
Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)
\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:
a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).
Thay vào điều kiện ta được:
qa1b = qc1d
\(\Leftrightarrow\)a1b = c1d
\(\Rightarrow\) d\(⋮\)a1
\(\Rightarrow\)d = d1a1
Thế ngược lại ta được: b = d1c1
Từ đây ta có:
A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n
= (a1 n + c1 n)(q n + d1 n)
Vậy A là hợp số
\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)
\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)
\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)
\(D< 4+2.\left(1-\frac{1}{2015}\right)\)
\(D< 6\)
mink chỉ làm được vậy thôi bạn ạ, sorry