Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có :a3+b3= (a+b)3-3ab(a+b) =(-2)3-3(-15)(-2)=-98 nha
k cho mình nha
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?
![](https://rs.olm.vn/images/avt/0.png?1311)
a3-b3= (a-b)(a2+ab+b2) (1)
a2+b2=(a-b)2+2ab
= 4+8
12 (2)
Thầy (2 ) và đk đề bài vào (1) ta đc :
a3-b3= 2 (12+ 4)
=32
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử: a = 2 ; b=3 ; c = -5 ( vì miễn a+b+c=0 là đk mà!^^)
Khi đó ta có biểu thức:
\(a^3+b^3+a^2c+b^2c-abc=2^3+3^3+2^2\left(-5\right)+3^2\left(-5\right)-2.3.\left(-5\right).\)
\(=8+27+\left(-20\right)+\left(-45\right)-\left(-30\right)\)
\(=35+30-20-45=65-65\)
\(=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
ta có: a + b + c = 0 => a + b = - c => (a+b)2 = (-c)2 => a2 + 2ab + b2 = c2 => a2 + b2 - c2 = -2ab
chứng minh tương tự, ta có: b2 + c2 -a2 = -2bc; c2 + a2 - b2 = -2ac
\(A=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
\(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ac}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)
=> A là số hữu tỉ
...
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : a + b = 1 => (a + b)2 = a2 + 2ab +b2 = 1 (1)
a3 + b3 = (a + b)(a2 - ab + b2) = a2 - ab +b2 (do a + b =1) = 4 (2)
(1),(2) => -3ab = 3 <=> ab = -1
Từ đó, ta có a2 + b2 = 3
Vậy a4 + b4 = (a2 + b2)2 - 2a2b2 = 32 - 2. (-1)2 = 9 - 2 =7
![](https://rs.olm.vn/images/avt/0.png?1311)
TA có \(\left(a+b+c\right)^2=0\Rightarrow ab+bc+ca=-\frac{1}{2}\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
=> \(a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Mà \(\left(a^2+b^2+c^2\right)^2=1\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
=> \(a^4+b^4+c^4=\frac{1}{2}\)
^_^
Ta có: a+b+c=0 <=> (a+b+c)2=0 <=> a2+b2+c2+ 2( ab+ac+bc)=0 <=> 2(ab+ac+bc)= -1 ( vì a2+b2+c2=1) <=> ab+ac+bc= -1/2
=> (ab+ac+bc)2= 1/4 <=> a2b2+a2c2+b2c2+2abc(a+b+c)= 1/4 <=> 2(a2b2+a2c2+b2c2)= 1/2 ( vì a+b+c=0) (*)
Lại có: a2+b2+c2=1 <=> (a2+b2+c2)2=1 <=> a4+b4+c4+2(a2b2+a2c2+b2c2)=1 <=> a4+b4+c4= 1/2 ( vì (*))
Vậy,...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=\left(-2\right)^3-3\cdot\left(-15\right)\cdot\left(-2\right)=\left(-8\right)-90=-98\)