\(a,b\) >0 và  \(a+b\le2\) . Tìm giá trị nhỏ nhất của...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

\(P=\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)

\(\Rightarrow P\sqrt{2}=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(a+1\right)}\)

\(\le\frac{1}{2}\left(2a+b+1\right)+\frac{1}{2}\left(2b+a+1\right)\)

\(\le\frac{1}{2}\left(3a+3b+2\right)\le\frac{1}{2}.\left(3.2+2\right)=4\)

\(\Rightarrow p\le2\sqrt{2}\)

Dấu"=" xảy ra \(\Leftrightarrow a=b=1\)

Vậy Max P \(=2\sqrt{2}\)\(\Leftrightarrow a=b=1\)

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

12 tháng 10 2017

ĐỀ thi hsg toán 9 hải phòng năm 2016-2017

12 tháng 10 2017
thiệt ah
6 tháng 6 2019

a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)

Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)

Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Cộng các vế lại, ta được :

\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)

\(\Rightarrow B\le6\)

Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)

27 tháng 4 2019

\(a,A=\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

        \(=3\sqrt{3}+\frac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\left(\sqrt{3}-1\right)\)

         \(=3\sqrt{3}+\frac{2\sqrt{3}+4}{3-4}-\sqrt{3}+1\)

        \(=3\sqrt{3}-2\sqrt{3}-4-\sqrt{3}+1\)

       \(=-3\)

\(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

     \(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

    \(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

    \(=\frac{\sqrt{x}-1}{\sqrt{x}}\)

b, Ta có \(B< A\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< -3\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}+3< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-1+3\sqrt{x}}{\sqrt{x}}< 0\)

\(\Leftrightarrow\frac{4\sqrt{x}-1}{\sqrt{x}}< 0\)

\(\Leftrightarrow4\sqrt{x}-1< 0\left(Do\sqrt{x}>0\right)\)

\(\Leftrightarrow\sqrt{x}< \frac{1}{4}\)

\(\Leftrightarrow0< x< \frac{1}{2}\)(Kết hợp ĐKXĐ)

Vậy ...

16 tháng 5 2018

\(\sqrt{3}.M\)=\(a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)

Ap dụng bđt cosi :

\(\sqrt{3}\)M≤\(a.\left(\dfrac{5b+a}{2}\right)+b.\left(\dfrac{5a+b}{2}\right)=\dfrac{10ab+a^2+b^2}{2}\)

ta có a^2+b^2≥2ab. mà a^2+b^2≤2=>10ab≤10

=>\(\sqrt{3}\)M≤6=>M≤2\(\sqrt{3}\)

17 tháng 5 2018

mik k hiểu cho lắm

bạn giải thích từ chỗ dùng cosi đc k