Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cm bằng cách bđ tương đương
\(Cm:ab\left(a+b\right)^2\le\frac{1}{64}\Leftrightarrow64ab\left(a+b\right)^2\le1\Leftrightarrow8\left(a+b\right)\sqrt{ab}\le1.\)
Ta có:
\(8\left(a+b\right)\sqrt{ab}=4.\left(a+b\right).2\sqrt{ab}\le4.\frac{a+b+2\sqrt{ab}}{4}=\left(\sqrt{a}+\sqrt{b}\right)^2=1\left(đpcm\right)\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{4}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 1:
a: \(=\dfrac{1}{mn^2}\cdot\dfrac{n^2\cdot\left(-m\right)}{\sqrt{5}}=\dfrac{-\sqrt{5}}{5}\)
b: \(=\dfrac{m^2}{\left|2m-3\right|}=\dfrac{m^2}{3-2m}\)
c: \(=\left(\sqrt{a}+1\right):\dfrac{\left(a-1\right)^2}{\left(1-\sqrt{a}\right)}=\dfrac{-\left(a-1\right)}{\left(a-1\right)^2}=\dfrac{-1}{a-1}\)
\(VT\le\sqrt{\left(1+1\right)\left(2ab+a+b\right)}\)
\(\le\sqrt{\left(1+1\right)\left(\frac{\left(a+b\right)^2}{2}+a+b\right)}\)
\(\le\sqrt{\left(1+1\right)\left(\frac{2^2}{2}+2\right)}=2\sqrt{2}\)
Dấu "=" khi \(a=b=1\)
Ta có:
\(\sqrt{a}+\sqrt{b}=1\)
\(\Leftrightarrow(\sqrt{a}+\sqrt{b})^2=1\)
\(\Leftrightarrow a+b+2\sqrt{ab}=1\)
\(\Leftrightarrow2\sqrt{ab}=1-\left(a+b\right)\)
\(\Leftrightarrow\sqrt{ab}=\dfrac{1-\left(a+b\right)}{2}\)
Lại có:
\(ab\left(a+b\right)^2=\left[\sqrt{ab}.\left(a+b\right)\right]^2=\left[\dfrac{1-\left(a+b\right)}{2}.\left(a+b\right)\right]^2=\left[\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}\right]^2\)
Ta thấy:
\(\left(a+b\right)-\left(a+b\right)^2=-\left[\left(a+b\right)^2-\left(a+b\right)\right]=-\left[\left(a+b\right)^2-\left(a+b\right)+\dfrac{1}{4}-\dfrac{1}{4}\right]=-\left(a+b-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}\le\dfrac{1}{8}\)
\(\Leftrightarrow[\dfrac{\left(a+b\right)-\left(a+b\right)^2}{2}]^2\le\dfrac{1}{64}\)
hay \(ab\left(a+b\right)^2\le\dfrac{1}{64}\) (đpcm)